• Aberson, S. D., 2002: Two years of operational hurricane synoptic surveillance. Wea. Forecasting, 17 , 11011110.

  • Aberson, S. D., and Franklin J. L. , 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Amer. Meteor. Soc., 80 , 421427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, K., and Ray P. S. , 2004: North Atlantic hurricanes 1977–99: Surface hurricane-force wind radii. Mon. Wea. Rev., 132 , 11671189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., DeMaria M. , and Knaff J. A. , 2006: Tropical cyclone wind retrievals from the Advanced Microwave Sounder Unit (AMSU): Application to surface wind analysis. J. Appl. Meteor. Climatol., 45 , 399415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., Smith C. , and Wallace J. M. , 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brueske, K. F., and Velden C. S. , 2003: Satellite-based tropical cyclone intensity estimation using the NOAA-KLM series Advanced Microwave Sounding Unit (AMSU). Mon. Wea. Rev., 131 , 687697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr L. E. III, , and Elsberry R. L. , 1997: Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon. Wea. Rev., 125 , 31903209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and Gray W. M. , 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130 , 19892005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., Molinari J. , and Black M. L. , 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133 , 29052921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croxford, M., and Barnes G. M. , 2002: Inner core strength of Atlantic tropical cyclones. Mon. Wea. Rev., 130 , 127139.

  • Dunion, J. P., and Velden C. S. , 2002: Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. Part I: Methodology and validation. Mon. Wea. Rev., 130 , 13331346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., Houston S. H. , Velden C. S. , and Powell M. D. , 2002: Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. Part II: Integration into surface wind analyses. Mon. Wea. Rev., 130 , 13471355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., Landsea C. W. , Houston S. H. , and Powell M. D. , 2003: A reanalysis of the surface winds for Hurricane Donna of 1960. Mon. Wea. Rev., 131 , 19922011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp. [Available from NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20233.].

  • Franklin, J. L., Black M. L. , and Valde K. , 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18 , 3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodberlet, M. A., Swift C. T. , and Wilkerson J. C. , 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res., 94 , 1454714555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herndon, D. H., and Velden C. S. , 2004: Upgrades to the UW-CIMSS AMSU-based tropical cyclone intensity algorithm. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., CD-ROM, 4D.1.

  • Hock, T. F., and Franklin J. L. , 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., Neumann C. J. , and Davis M. A. S. , 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations and uses. NOAA Tech. Memo. NWS NHC 22, NOAA/National Hurricane Center, Miami, FL, 21 pp. [Available from NOAA/Tropical Prediction Center, 11691 SW 17th St., Miami, FL 33165–2149.].

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., Zipser E. J. , and LeMone M. A. , 1985: Vertical motion in intense hurricanes. J. Atmos. Sci., 42 , 839856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and Mulekar M. S. , 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17 , 35553575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and DeMaria M. , 2006: A multi-platform satellite tropical cyclone wind analysis system. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, P4.9.

  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130 , 22602270.

  • Kossin, J. P., and Eastin M. D. , 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., Schubert W. H. , and Montgomery M. T. , 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57 , 38933917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks F. D. Jr, , 2003: State of the science: Radar view of tropical cyclones. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 33–74.

    • Crossref
    • Export Citation
  • Merrill, R. T., 1984: A Comparison of large and small tropical cyclones. Mon. Wea. Rev., 112 , 14081418.

  • Miller, R. J., Schrader A. J. , Sampson C. R. , and Tsui T. L. , 1990: The Automated Tropical Cyclone Forecasting System (ATCF). Wea. Forecasting, 5 , 653660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., DeMaria M. , Knaff J. A. , Kossin J. P. , and Vonder Haar T. H. , 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21 , 907922.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and Velden C. S. , 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Houston S. H. , 1996: Hurricane Andrew’s landfall in south Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11 , 329349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Houston S. H. , and Reinhold T. A. , 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11 , 304328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Houston S. H. , Amat L. R. , and Morisseau-Leroy N. , 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Indust. Aerodyn., 77–78 , 5364.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., Montgomery M. T. , Marks F. D. Jr., and Gamache J. F. , 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., Schubert W. H. , McNoldy B. D. , and Kossin J. P. , 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63 , 325340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and Schrader A. J. , 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81 , 12311240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and Zipser E. J. , 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 35023517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and Willoughby H. E. , 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and Gray W. M. , 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 15441564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and Black P. G. , 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20 , 99116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., Olander T. L. , and Zehr R. M. , 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13 , 172186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86 , 205223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and Gray W. M. , 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116 , 10321043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and Gray W. M. , 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., Bourassa M. A. , and Tongue J. , 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19 , 738746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126 , 30533067.

  • Willoughby, H. E., and Rahn M. E. , 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132 , 30333048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., Clos J. A. , and Shoreibah M. G. , 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86 , 787790.

    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., Stiles B. W. , and Liu W. T. , 2003: QuikSCAT wind retrievals for tropical cyclones. IEEE Trans. Geosci. Remote Sens., 41 , 26162628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 2000: Tropical cyclone research using large infrared image data sets. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 486–487.

  • Zeng, L., and Brown R. A. , 1998: Scatterometer observations at high wind speeds. J. Appl. Meteor., 37 , 14121420.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 23 23 23

Estimating Hurricane Wind Structure in the Absence of Aircraft Reconnaissance

View More View Less
  • * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
  • | + Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | # Risk Prediction Initiative, Bermuda Biological Station for Research, Garrett Park, Maryland
  • | @ Naval Research Laboratory, Monterey, California
Restricted access

Abstract

New objective methods are introduced that use readily available data to estimate various aspects of the two-dimensional surface wind field structure in hurricanes. The methods correlate a variety of wind field metrics to combinations of storm intensity, storm position, storm age, and information derived from geostationary satellite infrared (IR) imagery. The first method estimates the radius of maximum wind (RMW) in special cases when a clear symmetric eye is identified in the IR imagery. The second method estimates RMW, and the additional critical wind radii of 34-, 50-, and 64-kt winds for the general case with no IR scene–type constraint. The third method estimates the entire two-dimensional surface wind field inside a storm-centered disk with a radius of 182 km. For each method, it is shown that the inclusion of infrared satellite data measurably reduces error. All of the methods can be transitioned to an operational setting or can be used as a postanalysis tool.

Corresponding author address: Dr. James P. Kossin, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, WI 53706. Email: kossin@ssec.wisc.edu

Abstract

New objective methods are introduced that use readily available data to estimate various aspects of the two-dimensional surface wind field structure in hurricanes. The methods correlate a variety of wind field metrics to combinations of storm intensity, storm position, storm age, and information derived from geostationary satellite infrared (IR) imagery. The first method estimates the radius of maximum wind (RMW) in special cases when a clear symmetric eye is identified in the IR imagery. The second method estimates RMW, and the additional critical wind radii of 34-, 50-, and 64-kt winds for the general case with no IR scene–type constraint. The third method estimates the entire two-dimensional surface wind field inside a storm-centered disk with a radius of 182 km. For each method, it is shown that the inclusion of infrared satellite data measurably reduces error. All of the methods can be transitioned to an operational setting or can be used as a postanalysis tool.

Corresponding author address: Dr. James P. Kossin, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, WI 53706. Email: kossin@ssec.wisc.edu

Save