A Quantitative Analysis of the Enhanced-V Feature in Relation to Severe Weather

Jason C. Brunner Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Jason C. Brunner in
Current site
Google Scholar
PubMed
Close
,
Steven A. Ackerman Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Steven A. Ackerman in
Current site
Google Scholar
PubMed
Close
,
A. Scott Bachmeier Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by A. Scott Bachmeier in
Current site
Google Scholar
PubMed
Close
, and
Robert M. Rabin National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert M. Rabin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Early enhanced-V studies used 8-km ground-sampled distance and 30-min temporal-sampling Geostationary Operational Environmental Satellite (GOES) infrared (IR) imagery. In contrast, the ground-sampled distance of current satellite imagery is 1 km for low earth orbit (LEO) satellite IR imagery. This improved spatial resolution is used to detect and investigate quantitative parameters of the enhanced-V feature. One of the goals of this study is to use the 1-km-resolution LEO data to help understand the impact of higher-resolution GOES data (GOES-R) when it becomes available. A second goal is to use the LEO data available now to provide better severe storm information than GOES when it is available. This study investigates the enhanced-V feature observed with 1-km-resolution satellite imagery as an aid for severe weather warning forecasters by comparing with McCann’s enhanced-V study. Therefore, verification statistics such as the probability of detection, false alarm ratio, and critical success index were calculated. Additionally, the importance of upper-level winds to severe weather occurrence will be compared with that of the quantitative parameters of the enhanced-V feature. The main goal is to provide a basis for the development of an automated detection algorithm for enhanced-V features from the results in this study. Another goal is to examine daytime versus nighttime satellite overpass distributions with the enhanced-V feature.

Corresponding author address: Jason C. Brunner, CIMSS, University of Wisconsin—Madison, Madison, WI 53706. Email: jasonb@ssec.wisc.edu

Abstract

Early enhanced-V studies used 8-km ground-sampled distance and 30-min temporal-sampling Geostationary Operational Environmental Satellite (GOES) infrared (IR) imagery. In contrast, the ground-sampled distance of current satellite imagery is 1 km for low earth orbit (LEO) satellite IR imagery. This improved spatial resolution is used to detect and investigate quantitative parameters of the enhanced-V feature. One of the goals of this study is to use the 1-km-resolution LEO data to help understand the impact of higher-resolution GOES data (GOES-R) when it becomes available. A second goal is to use the LEO data available now to provide better severe storm information than GOES when it is available. This study investigates the enhanced-V feature observed with 1-km-resolution satellite imagery as an aid for severe weather warning forecasters by comparing with McCann’s enhanced-V study. Therefore, verification statistics such as the probability of detection, false alarm ratio, and critical success index were calculated. Additionally, the importance of upper-level winds to severe weather occurrence will be compared with that of the quantitative parameters of the enhanced-V feature. The main goal is to provide a basis for the development of an automated detection algorithm for enhanced-V features from the results in this study. Another goal is to examine daytime versus nighttime satellite overpass distributions with the enhanced-V feature.

Corresponding author address: Jason C. Brunner, CIMSS, University of Wisconsin—Madison, Madison, WI 53706. Email: jasonb@ssec.wisc.edu

Save
  • Ackerman, S. A., and Knox J. A. , 2003: Thunderstorms and tornadoes. Meteorology: Understanding the Atmosphere, K. Dodson et al., Eds., Brooks/Cole, 306–337.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Mack R. A. , 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43 , 19451960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Markus M. J. , Fenn D. D. , Szejwach G. , and Shenk W. E. , 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Appl. Meteor., 22 , 579593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Markus M. J. , and Fenn D. D. , 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113 , 769781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, J. C., 2004: A quantitative analysis of the enhanced-V feature in relation to severe weather. M.S. thesis, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 96 pp.

  • Changnon, S. A., 2001: Thunderstorms across the Nation: An Atlas of Storms, Hail, and Their Damages in the 20th Century. Changnon Climatologist, 93 pp.

  • Clark, J. D., Ed.,. 1983: The GOES user’s guide. NOAA Rep. NOAA83093001, Washington, DC, 167 pp.

  • Fujita, T. T., 1974: Overshooting thunderheads observed from ATS and Learjet. Satellite and Mesometeorology Research Project Rep. 117, Texas Tech University, Lubbock, TX, 29 pp.

  • Fujita, T. T., 1978: Manual of downburst identification for Project NIM-ROD. Satellite and Mesometeorology Research Project Rep. 156, University of Chicago, Chicago, IL, 104 pp.

  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60 , 355368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunshor, M. M., Schmit T. J. , and Menzel W. P. , 2004: Intercalibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar-orbiting satellite. J. Atmos. Oceanic Technol., 21 , 6168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Blackmer R. H. Jr., 1988: Satellite-observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116 , 22002224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Fulton R. , 1994: Passive microwave structure of severe tornadic storms on 16 November 1987. Mon. Wea. Rev., 122 , 25872595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Blackmer R. H. Jr., and Schotz S. , 1983a: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40 , 17401755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Szejwach G. , Schotz S. , and Blackmer R. H. Jr., 1983b: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. II: Proposed explanation of “V” pattern and internal warm region in infrared observations. J. Atmos. Sci., 40 , 17561767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Fulton R. , and Spinhirne J. D. , 1991: Aircraft overflight measurements of Midwest severe storms: Implications on geosynchronous satellite interpretations. Mon. Wea. Rev., 119 , 436456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc., 80 , 271284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111 , 887894.

  • Menzel, W. P., and Purdom J. F. , 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75 , 757781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., Tuttle J. D. , and Foote G. B. , 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47 , 16191646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63 , 11511159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., Corfidi S. F. , Brunner J. C. , and Hane C. E. , 2004: Detecting winds aloft from water vapour satellite imagery in the vicinity of storms. Weather, 59 , 251257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5 , 570575.

  • Schlesinger, R. E., 1984: Mature thunderstorm cloud-top structure and dynamics: A three-dimensional numerical simulation study. J. Atmos. Sci., 41 , 15511570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvak, M., Rabin R. M. , and Wang P. K. , 2007: Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res., 83 , 505518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stobie, J. G., 1975: Gravity shear waves atop the cirrus layer of intense convective storms. NASA Contractor Rep. NASA-CR-147140, Colorado State University, Fort Collins, CO, 128 pp.

  • Tobin, D. C., Revercomb H. E. , Moeller C. C. , and Pagano T. S. , 2006: Use of Atmospheric Infrared Sounder high–spectral resolution spectra to assess the calibration of Moderate resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res., 111 .D09S05, doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83 , 254262.

  • Wang, P. K., Lin H-M. , Natali S. , Bachmeier S. , and Rabin R. , 2002: Cloud model interpretation of the mechanisms responsible for the satellite-observed enhanced V and other features atop some Midwest severe thunderstorms. Preprints, 11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., CD-ROM, 1.2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 525 219 22
PDF Downloads 305 91 9