Statistical Tropical Cyclone Wind Radii Prediction Using Climatology and Persistence

John A. Knaff NOAA/NESDIS/Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado

Search for other papers by John A. Knaff in
Current site
Google Scholar
PubMed
Close
,
Charles R. Sampson Naval Research Laboratory, Monterey, California

Search for other papers by Charles R. Sampson in
Current site
Google Scholar
PubMed
Close
,
Mark DeMaria NOAA/NESDIS/Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado

Search for other papers by Mark DeMaria in
Current site
Google Scholar
PubMed
Close
,
Timothy P. Marchok NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Timothy P. Marchok in
Current site
Google Scholar
PubMed
Close
,
James M. Gross NOAA/NWS/NCEP/Tropical Prediction Center, Miami, Florida

Search for other papers by James M. Gross in
Current site
Google Scholar
PubMed
Close
, and
Colin J. McAdie NOAA/NWS/NCEP/Tropical Prediction Center, Miami, Florida

Search for other papers by Colin J. McAdie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An operational model used to predict tropical cyclone wind structure in terms of significant wind radii (i.e., 34-, 50-, and 64-kt wind radii, where 1 kt = 0.52 m s−1) at the National Oceanic and Atmospheric Administration/National Hurricane Center (NHC) and the Department of Defense/Joint Typhoon Warning Center (JTWC) is described. The statistical-parametric model employs aspects of climatology and persistence to forecast tropical cyclone wind radii through 5 days. Separate versions of the model are created for the Atlantic, east Pacific, and western North Pacific by statistically fitting a modified Rankine vortex, which is generalized to allow wavenumber-1 asymmetries, to observed values of tropical cyclone wind radii as reported by NHC and JTWC. Descriptions of the developmental data and methods used to formulate the model are given. A 2-yr verification and comparison with operational forecasts and an independently developed wind radii forecast method that also employs climatology and persistence suggests that the statistical-parametric model does a good job of forecasting wind radii. The statistical-parametric model also provides reliable operational forecasts that serve as a baseline for evaluating the skill of operational forecasts and other wind radii forecast methods in these tropical cyclone basins.

Corresponding author address: John Knaff, NOAA/NESDIS/Regional and Mesoscale Meteorology Branch, CIRA/Colorado State University, Campus Delivery 1375, Fort Collins, CO 80523-1375. Email: john.knaff@noaa.gov

Abstract

An operational model used to predict tropical cyclone wind structure in terms of significant wind radii (i.e., 34-, 50-, and 64-kt wind radii, where 1 kt = 0.52 m s−1) at the National Oceanic and Atmospheric Administration/National Hurricane Center (NHC) and the Department of Defense/Joint Typhoon Warning Center (JTWC) is described. The statistical-parametric model employs aspects of climatology and persistence to forecast tropical cyclone wind radii through 5 days. Separate versions of the model are created for the Atlantic, east Pacific, and western North Pacific by statistically fitting a modified Rankine vortex, which is generalized to allow wavenumber-1 asymmetries, to observed values of tropical cyclone wind radii as reported by NHC and JTWC. Descriptions of the developmental data and methods used to formulate the model are given. A 2-yr verification and comparison with operational forecasts and an independently developed wind radii forecast method that also employs climatology and persistence suggests that the statistical-parametric model does a good job of forecasting wind radii. The statistical-parametric model also provides reliable operational forecasts that serve as a baseline for evaluating the skill of operational forecasts and other wind radii forecast methods in these tropical cyclone basins.

Corresponding author address: John Knaff, NOAA/NESDIS/Regional and Mesoscale Meteorology Branch, CIRA/Colorado State University, Campus Delivery 1375, Fort Collins, CO 80523-1375. Email: john.knaff@noaa.gov

Save
  • Aberson, S. D., 1998: Five-day tropical cyclone track forecasting in the North Atlantic basin. Wea. Forecasting, 13 , 10051015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J-H., 1994: A regression model for the western North Pacific tropical cyclone intensity forecasts. Naval Research Laboratory Memo. Rep. 7541-94-7215, 33 pp. [Available from Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943-5502.].

  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Knaff J. A. , and Sampson C. R. , 2007: Evaluation of long-term trends in tropical cyclone intensity forecasts. Meteor. Atmos. Phys., in press.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., DeMaria M. , Knaff J. A. , and Vonder Haar T. H. , 2004: Validation of an Advanced Microwave Sounder Unit (AMSU) tropical cyclone intensity and size estimation algorithm. J. Appl. Meteor., 43 , 282296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., DeMaria M. , and Knaff J. A. , 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45 , 15731581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., McAdie C. J. , and Lawrence M. B. , 2003: Trends in track forecasting for tropical cyclones threatening the United States, 1970–2001. Bull. Amer. Meteor. Soc., 84 , 11971203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., Sampson C. R. , and Gross J. M. , 2004: A history of western North Pacific tropical cyclone track forecast skill. Wea. Forecasting, 19 , 633638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., and Neumann C. J. , 1979: Statistical forecasts of tropical cyclone intensity for the North Atlantic basin. NOAA Tech. Memo. NWS NHC-10, 22 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Jarvinen, B. R., Neumann C. J. , and Davis M. A. S. , 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations and uses. NOAA Tech. Memo. NWS NHC 22, Coral Gables, FL, 21 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • JTWC, cited. 2005: Tropical cyclone best track data site. [Available online at https://metocph.nmci.navy.mil/jtwc/best_tracks/.].

  • Kimball, S. K., and Mulekar M. S. , 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17 , 35553575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knabb, R., Rappaport E. , Mainelli M. , Franklin J. , Lauer C. , and Krautkramer A. , cited. 2006: Progress toward operational implementation of tropical cyclone wind probability products. [Available online at http://www.ofcm.gov/ihc06/Presentations/06%20session6%20Decision-making%20Products/s6-04Session%206%20(knabb).ppt#492,31,Slide 31.].

  • Knaff, J. A., and Landsea C. W. , 1997: An El Niño–Southern Oscillation climatology and persistence (CLIPER) forecasting scheme. Wea. Forecasting, 12 , 633652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., DeMaria M. , Sampson C. R. , and Gross J. M. , 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18 , 8092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Sampson C. R. , and DeMaria M. , 2005: An operational Statistical Typhoon Intensity Prediction Scheme for the western North Pacific. Wea. Forecasting, 20 , 688699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Guard C. P. , Kossin J. P. , Marchok T. P. , Smith T. , and Surgi N. , 2006: Operational guidance and skill in forecasting tropical cyclone structure change. Workshop Topic Reports of the Sixth WMO International Workshop on Tropical Cyclones, Tropical Meteorology Research Programme Rep. 72, 29 pp. [Available from World Meteorological Organization, Case Postale 2300, CH-1211 Geneva 2, Switzerland, and online at http://www.wmo.ch/web/arep/arep-home.html.].

  • Kossin, J. P., Knaff J. A. , Berger H. I. , Herndon D. C. , Cram T. A. , Velden C. S. , Murnane R. J. , and Hawkins J. D. , 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22 , 89101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAdie, C. J., 2004: Development of a wind-radii CLIPER model. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 170–171.

  • McAdie, C. J., and Lawrence M. B. , 2000: Improvements in tropical cyclone track forecasting in the Atlantic basin, 1970–98. Bull. Amer. Meteor. Soc., 81 , 989998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1980: A statistical tropical cyclone motion forecasting system for the Gulf of Mexico. NOAA Tech. Memo. NWS NHC 14, 21 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112 , 14081418.

  • Mueller, K. J., DeMaria M. , Knaff J. A. , Kossin J. P. , and Vonder Haar T. H. , 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21 , 9901005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1972: An alternate to the HURAN (hurricane analog) tropical cyclone forecasting system. NOAA Tech. Memo. NWS SR-62, 23 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Sampson, C. R., and Schrader A. J. , 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc, 81 , 12311240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., Knaff J. A. , and Fukada E. M. , 2007: Operational evaluation of a selective consensus in the western North Pacific basin. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Schwerdt, R. W., Ho F. P. , and Watkins R. R. , 1979: Meteorological criteria for standard project hurricane and probable maximum hurricane wind fields, Gulf and east coasts of the United States. NOAA Tech. Rep. NWS 23, 317 pp. [Available from National Hurricane/Tropical Prediction Center Library, 11691 SW 117th St., Miami, FL 33165-2149.].

  • Shapiro, L. J., and Montgomery M. T. , 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., 2000: Use of the “odds ratio” for diagnosing forecast skill. Wea. Forecasting, 15 , 221232.

  • von Storch, H., and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Weatherford, C. L., and Gray W. M. , 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and Rahn M. E. , 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132 , 30333048.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2383 1051 316
PDF Downloads 1396 294 22