• Awaka, J., , Iguchi T. , , and Okamoto K. , 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. Proc. Eighth URSI Commission F Open Symp., Aveiro, Portugal, Int. Union of Radio Science, 143–146.

  • Bradbury, D. L., 1957: Moisture analysis and water budget in three different types of storms. J. Meteor., 14 , 559565.

  • Braun, S. A., , Montgomery M. T. , , and Pu Z. , 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63 , 1942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, F. H., , and Bosart L. F. , 1978: A diagnostic evaluation of rainfall predictability for Tropical Storm Agnes, June 1972. Mon. Wea. Rev., 106 , 363374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Challa, M., , and Pfeffer R. , 1980: Effects of eddy flux of angular momentum on model hurricane development. J. Atmos. Sci., 37 , 16031618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and Elliassen A. , 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21 , 6875.

  • DeMaria, M., , Baik J-J. , , and Kaplan J. , 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50 , 11331147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105 , 11191135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and Ritchie E. , 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., , Houze R. A. , , and Marks F. D. Jr., 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50 , 32213243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., , and Phoebus P. A. , 1992: The Navy’s operational atmospheric analysis. Wea. Forecasting, 7 , 232249.

  • Goerss, J. S., , and Jeffries R. A. , 1994: Assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System. Wea. Forecasting, 9 , 557576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Roy. Meteor. Soc., 155–218.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., , Garstang M. , , Scala J. , , and Tao W-K. , 1996: Water and energy budgets of a Florida mesoscale convective system: A combined observational and modeling study. Mon. Wea. Rev., 124 , 11611180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J., , Simpson J. , , Heymsfield G. , , Pierce H. , , Hock T. , , and Ritchie L. , 2006: Warm core structure of Hurricane Erin diagnosed from high-altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63 , 309324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and Rubsam D. T. , 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96 , 617636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and Imbembo S. M. , 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104 , 418442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , Halverson J. B. , , Ritchie E. , , Simpson J. , , Molinari J. , , and Tian L. , 2005: Structure of the highly sheared Tropical Storm Chantal during CAMEX-4. J. Atmos. Sci., 63 , 268287.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. O., 1991: DMSP Special Sensor Microwave/Imager calibration/validation. Final Rep. Vol. 11, 1225 pp. [Available from J. O. Hollinger, Naval Research Laboratory, Washington, DC 20375.].

  • Huffman, G. J., , Adler R. F. , , Stocker E. F. , , Bolvin D. T. , , and Nelkin E. J. , 2003: Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P4.11.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2004: Quantitative precipitation and hydrometeor content estimation in tropical cyclones from remote sensing observations. Ph.D. dissertation, University of Utah, Salt Lake City, UT, 207 pp.

  • Jiang, H., , and Zipser E. J. , 2006: Retrieval of hydrometeor profiles in tropical cyclones and convection from combined radar and radiometer observations. J. Appl. Meteor., 45 , 10961115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., , Halverson J. B. , , and Simpson J. , 2008: On the differences in storm rainfall of Hurricanes Isidore and Lili. Part I: Satellite observations and rain potential. Wea. Forecasting, 23 , 2943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Olson W. S. , , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 12131232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32 , 2559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1988: Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. J. Geophys. Res., 93 , 67496760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , Marks F. D. , , and Chen S. S. , 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132 , 16451660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Malkus, J., , and Riehl H. , 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12 , 120.

  • Merrill, R. T., 1988: Environmental influence on hurricane intensification. J. Atmos. Sci., 45 , 16781687.

  • Molinari, J., , and Skubis S. , 1985: Evolution of the surface wind field in an intensifying tropical cyclone. J. Atmos. Sci., 42 , 28652879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., , Vollaro D. , , and Corbosiero K. L. , 2004: Tropical storm formation in a sheared environment: A case study. J. Atmos. Sci., 61 , 24932509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundell, D. B., 1991: Tropical cyclone intensification. Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 511–515.

  • Rabin, R. M., , McMurdie L. A. , , Hayden C. M. , , and Wade G. S. , 1993: Evaluation of the atmospheric water budget following an intense cold-air outbreak over the Gulf of Mexico—Application of a regional forecast model and SSM/I observations. J. Appl. Meteor., 32 , 316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , and Pierce H. F. , 1995: Environmental influence on Typhoon Bobbie’s precipitation distribution. J. Appl. Meteor., 34 , 25152532.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , Chang S. W. , , Stout J. , , Steranka J. , , and Shi J-J. , 1991: Satellite observations of variations in tropical cyclone convection caused by upper-tropospheric troughs. J. Appl. Meteor., 30 , 11631184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , Baik J-J. , , and Pierce H. F. , 1994: The environmental influence on tropical cyclone precipitation. J. Appl. Meteor., 33 , 573593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , Olson W. S. , , Karyampudi V. M. , , and Pierce H. F. , 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126 , 12291247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , Olson W. S. , , Halverson J. , , Simpson J. , , and Pierce H. F. , 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39 , 19832006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., 1992: The design and testing of the Navy Operational Global Atmospheric Prediction System. Wea. Forecasting, 7 , 262272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., , Adler R. F. , , and North G. R. , 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., , Kummerow C. , , Tao W-K. , , and Adler R. F. , 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

  • Spar, J., 1953: A suggested technique for quantitative precipitation forecasting. Mov. Wea. Rev., 81 , 217221.

  • Spencer, R. W., , Goodman H. M. , , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for Special Sensor Microwave/Imager. J. Geophys. Res., 102 , 87038718.

  • Zehr, R. M., 2003: Environmental vertical wind with Hurricane Bertha (1996). Wea. Forecasting, 18 , 345356.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 6
PDF Downloads 23 23 6

On the Differences in Storm Rainfall from Hurricanes Isidore and Lili. Part II: Water Budget

View More View Less
  • 1 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and Mesoscale Atmospheric Processes Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 3 Department of Meteorology, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

Part I of this two-part paper examined the satellite-derived rainfall accumulation and rain potential history of Hurricanes Isidore and Lili (2002). This paper (Part II) uses analyses from the Navy Operational Global Atmospheric Prediction System (NOGAPS) to examine the water budget and environmental parameters and their relationship to the precipitation for these two storms. Factors other than storm size are found to account for large volumetric differences in storm total rainfall between Lili and Isidore. It is found that the horizontal moisture convergence was crucial to the initiation and maintenance of Isidore’s intense rainfall before and during its landfall. When the storm was over the ocean, the ocean moisture flux (evaporation) was the second dominant term among the moisture sources that contribute to precipitation. During Isidore’s life history, the strong horizontal moisture flux convergence corresponded to the large storm total precipitable water. The large difference in budget-derived stored cloud ice and liquid water between Isidore and Lili is corroborated from Tropical Rainfall Measuring Mission (TRMM) measurements. During Isidore’s landfall, the decrease in environmental water vapor contributed to rainfall in a very small amount. These results indicate the importance of the environmental precipitable water and moisture convergence and ocean surface moisture flux in generating Isidore’s large rainfall volume and inland flooding as compared with Lili’s water budget history. Both the moisture convergence and ocean flux were small for Lili.

Corresponding author address: Dr. Haiyan Jiang, Dept. of Meteorology, University of Utah, Rm. 819 WBB, 135 S 1460 E, Salt Lake City, UT 84112. Email: h.jiang@utah.edu

Abstract

Part I of this two-part paper examined the satellite-derived rainfall accumulation and rain potential history of Hurricanes Isidore and Lili (2002). This paper (Part II) uses analyses from the Navy Operational Global Atmospheric Prediction System (NOGAPS) to examine the water budget and environmental parameters and their relationship to the precipitation for these two storms. Factors other than storm size are found to account for large volumetric differences in storm total rainfall between Lili and Isidore. It is found that the horizontal moisture convergence was crucial to the initiation and maintenance of Isidore’s intense rainfall before and during its landfall. When the storm was over the ocean, the ocean moisture flux (evaporation) was the second dominant term among the moisture sources that contribute to precipitation. During Isidore’s life history, the strong horizontal moisture flux convergence corresponded to the large storm total precipitable water. The large difference in budget-derived stored cloud ice and liquid water between Isidore and Lili is corroborated from Tropical Rainfall Measuring Mission (TRMM) measurements. During Isidore’s landfall, the decrease in environmental water vapor contributed to rainfall in a very small amount. These results indicate the importance of the environmental precipitable water and moisture convergence and ocean surface moisture flux in generating Isidore’s large rainfall volume and inland flooding as compared with Lili’s water budget history. Both the moisture convergence and ocean flux were small for Lili.

Corresponding author address: Dr. Haiyan Jiang, Dept. of Meteorology, University of Utah, Rm. 819 WBB, 135 S 1460 E, Salt Lake City, UT 84112. Email: h.jiang@utah.edu

Save