• Aebischer, U., , and Schär C. , 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55 , 186207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmadi-Givi, F., , Craig G. C. , , and Plant R. S. , 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130 , 295323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aubert, E. J., 1957: On the release of latent heat as a factor in large scale atmospheric motions. J. Atmos. Sci., 14 , 527542.

  • Baldwin, M. E., , Kain J. S. , , and Kay M. P. , 2002: Properties of the convective scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17 , 10631079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and Miller M. J. , 1993: The Betts–Miller scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 107–121.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 2003: Wither the weather analysis and forecasting process? Wea. Forecasting, 18 , 520529.

  • Bosart, L. F., , and Lackmann G. M. , 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123 , 32683291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., , and Lackmann G. M. , 2005: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 cyclone. Mon. Wea. Rev., 133 , 19131937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92 , 325334.

  • Cammas, J-P., , Keyser D. , , Lackmann G. M. , , and Molinari J. , 1994: Diabatic redistribution of potential vorticity accompanying the development of an outflow jet within a strong extratropical cyclone. Proc. Int. Symp. on the Life Cycles of Extratropical Cyclones, Vol. II, Bergen, Norway, Geophysical Institute, University of Bergen, 403–409.

  • Carroll, E. B., , and Hewson T. D. , 2005: NWP grid editing at the Met Office. Wea. Forecasting, 20 , 10211033.

  • Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3 , 2737.

  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120 , 24092428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and Emanuel K. A. , 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • Davis, C. A., , and Bosart L. F. , 2001: Numerical simulations of the genesis of Hurricane Diana. Part I: Control simulation. Mon. Wea. Rev., 129 , 18591881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and Bosart L. F. , 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131 , 27302747.

  • Davis, C. A., , Stoelinga M. T. , , and Kuo Y-H. , 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121 , 23092330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , Grell E. D. , , and Shapiro M. A. , 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124 , 326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., , Bosart L. F. , , Bracken W. E. , , Hakim G. J. , , Schultz D. M. , , Bedrick M. A. , , and Tyle K. R. , 1997: The March 1993 Superstorm: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125 , 30413072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell C. A. III, , 2004: Weather forecasting by humans—Heuristics and decision making. Wea. Forecasting, 19 , 11151126.

  • Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Meteor. Z., 59 , 271281.

  • Fritsch, J. M., , and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRPP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, M. E. B., 2001: The impact of mesoscale convective-system potential-vorticity anomalies on numerical-weather-prediction forecasts. Quart. J. Roy. Meteor. Soc., 127 , 7388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., , Keyser D. , , and Bosart L. F. , 1996: The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part II: Diagnosis using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 124 , 21762205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, J. M., , Lackmann G. M. , , and Gyakum J. R. , 1999: An analysis of Hurricane Opal’s forecast track errors using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 127 , 292307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , McIntyre M. E. , , and Robertson A. W. , 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, Z., , Zhang D-L. , , and Gyakum J. R. , 1999: Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion. Mon. Wea. Rev., 127 , 25462562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, K-I., , Zou X. , , DePondeca M. S. F. V. , , Shapiro M. , , Davis C. , , and Krueger A. , 2003: Incorporating TOMS ozone measurements into the prediction of the Washington, D.C., winter storm during 24–25 January 2000. J. Appl. Meteor., 42 , 797812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kain, J. S., , and Fritsch J. M. , 1998: Multiscale convective overturning in mesoscale convective systems: Reconciling observations, simulations, and theory. Mon. Wea. Rev., 126 , 22542273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., , Reed R. J. , , and Liu Y. , 1996: The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev., 124 , 14091434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130 , 5974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , and Gyakum J. G. , 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14 , 687700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., , Shapiro M. A. , , and Gelaro R. , 2002: Initial condition sensitivity and error grown in forecasts of the 25 January 2000 East Coast snowstorm. Mon. Wea. Rev., 130 , 957974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., , and Lackmann G. M. , 2006: The sensitivity of coastal cyclogenesis forecasts to convective parameterization: A case study of the 17 February 2004 East Coast cyclone. Wea. Forecasting, 21 , 465488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., , and Lackmann G. M. , 2007: The effect of upstream convection on downstream precipitation. Wea. Forecasting, 22 , 255277.

  • Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126 , 303328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., , and Otkin J. A. , 2004: The rapid growth and decay of an extratropical cyclone over the central Pacific Ocean. Wea. Forecasting, 19 , 358376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., 2003: IFPS and the future of the National Weather Service. Wea. Forecasting, 18 , 7579.

  • Molinari, J., 1993: An overview of cumulus parameterization in mesoscale models. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 155–158.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , Nicholls M. E. , , Cram T. A. , , and Saunders A. B. , 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., , and Nielsen-Gammon J. W. , 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126 , 25552579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, cited. 2007: U.S. storm events database. [Available online at http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwEvent~Storms.].

  • Petterssen, S., 1956: Weather Analysis and Forecasting. 2nd ed. McGraw-Hill, 428 pp.

  • Plant, R. S., , Craig G. C. , , and Gray S. L. , 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129 , 29893012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118 , 9871015.

  • Reed, R. J., , Stoelinga M. T. , , and Kuo Y-H. , 1992: A model-based study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120 , 893913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66 , (Suppl.). 6887.

  • Shapiro, L. J., , and Möller J. D. , 2003: Influence of atmospheric asymmetries on the intensification of Hurricane Opal: Piecewise PV inversion diagnosis of a GFDL model forecast. Mon. Wea. Rev., 131 , 16371649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , Nielsen-Gammon J. W. , , and Allen S. E. , 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134 , 17961814.

  • Stoelinga, M. T., 1996: A potential-vorticity based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 2003: Comments on “The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intense observing period one of FASTEX”. Mon. Wea. Rev., 131 , 19441947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutcliffe, R. C., , and Forsdyke A. G. , 1950: The theory and use of upper air thickness patterns in forecasting. Quart. J. Roy. Meteor. Soc., 76 , 189217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1986: Synoptic scale disturbances with circular symmetry. Mon. Wea. Rev., 114 , 13841389.

  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , and Johnson D. R. , 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107 , 682703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , Petersen R. A. , , Brill K. F. , , Kocin P. J. , , and Tuccillo J. J. , 1987: Synergistic interaction between and upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115 , 22272261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., , and Seaman N. L. , 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , Uccellini L. W. , , and Brill K. F. , 1988: A model-based diagnostic study of the rapid development phase of the Presidents’ Day cyclone. Mon. Wea. Rev., 116 , 23372365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Snyder C. , , and Rotunno R. , 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130 , 16171632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Snyder C. , , and Rotunno R. , 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60 , 11731185.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 25
PDF Downloads 77 77 17

Potential Vorticity (PV) Thinking in Operations: The Utility of Nonconservation

View More View Less
  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
© Get Permissions
Restricted access

Abstract

The use of the potential vorticity (PV) framework by operational forecasters is advocated through case examples that demonstrate its utility for interpreting and evaluating numerical weather prediction (NWP) model output for weather systems characterized by strong latent heat release (LHR). The interpretation of the dynamical influence of LHR is straightforward in the PV framework; LHR can lead to the generation of lower-tropospheric cyclonic PV anomalies. These anomalies can be related to meteorological phenomena including extratropical cyclones and low-level jets (LLJs), which can impact lower-tropospheric moisture transport.

The nonconservation of PV in the presence of LHR results in a modification of the PV distribution that can be identified in NWP model output and evaluated through a comparison with observations and high-frequency gridded analyses. This methodology, along with the application of PV-based interpretation, can help forecasters identify aspects of NWP model solutions that are driven by LHR; such features are often characterized by increased uncertainty due to difficulties in model representation of precipitation amount and latent heating distributions, particularly for convective systems.

Misrepresentation of the intensity and/or distribution of LHR in NWP model forecasts can generate errors that propagate through the model solution with time, potentially degrading the representation of cyclones and LLJs in the model forecast. The PV framework provides human forecasters with a means to evaluate NWP model forecasts in a way that facilitates recognition of when and how value may be added by modifying NWP guidance. This utility is demonstrated in case examples of coastal extratropical cyclogenesis and LLJ enhancement. Information is provided regarding tools developed for applying PV-based techniques in an operational setting.

* Current affiliation: NOAA/NWS/NCEP Hydrometeorological Prediction Center, Camp Springs, Maryland

Corresponding author address: Dr. Michael J. Brennan, NOAA/NWS Hydrometeorological Prediction Center, 5200 Auth Rd., Camp Springs, MD 20746. Email: michael.j.brennan@noaa.gov

Abstract

The use of the potential vorticity (PV) framework by operational forecasters is advocated through case examples that demonstrate its utility for interpreting and evaluating numerical weather prediction (NWP) model output for weather systems characterized by strong latent heat release (LHR). The interpretation of the dynamical influence of LHR is straightforward in the PV framework; LHR can lead to the generation of lower-tropospheric cyclonic PV anomalies. These anomalies can be related to meteorological phenomena including extratropical cyclones and low-level jets (LLJs), which can impact lower-tropospheric moisture transport.

The nonconservation of PV in the presence of LHR results in a modification of the PV distribution that can be identified in NWP model output and evaluated through a comparison with observations and high-frequency gridded analyses. This methodology, along with the application of PV-based interpretation, can help forecasters identify aspects of NWP model solutions that are driven by LHR; such features are often characterized by increased uncertainty due to difficulties in model representation of precipitation amount and latent heating distributions, particularly for convective systems.

Misrepresentation of the intensity and/or distribution of LHR in NWP model forecasts can generate errors that propagate through the model solution with time, potentially degrading the representation of cyclones and LLJs in the model forecast. The PV framework provides human forecasters with a means to evaluate NWP model forecasts in a way that facilitates recognition of when and how value may be added by modifying NWP guidance. This utility is demonstrated in case examples of coastal extratropical cyclogenesis and LLJ enhancement. Information is provided regarding tools developed for applying PV-based techniques in an operational setting.

* Current affiliation: NOAA/NWS/NCEP Hydrometeorological Prediction Center, Camp Springs, Maryland

Corresponding author address: Dr. Michael J. Brennan, NOAA/NWS Hydrometeorological Prediction Center, 5200 Auth Rd., Camp Springs, MD 20746. Email: michael.j.brennan@noaa.gov

Save