Using Precipitation Observations in a Mesoscale Short-Range Ensemble Analysis and Forecasting System

Tadashi Fujita NOAA/National Severe Storms Laboratory, and Sasaki Institute, University of Oklahoma, Norman, Oklahoma, and Numerical Prediction Division, Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Tadashi Fujita in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
, and
David C. Dowell Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David C. Dowell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple method to assimilate precipitation data from a synthesis of radar and gauge data is developed to operate alongside an ensemble Kalman filter that assimilates hourly surface observations. The mesoscale ensemble forecast system consists of 25 members with 30-km grid spacing and incorporates variability in both initial and boundary conditions and model physical process schemes. The precipitation assimilation method only incorporates information on when and where rainfall is observed. Model temperature and water vapor mixing ratio profiles at each grid point are modified if rainfall is observed but not predicted, or if rainfall is predicted but not observed. These modifications act to either increase or decrease, respectively, the likelihood that precipitation develops at that grid point.

Two cases are examined in which this technique is applied to assimilate precipitation data every 15 min from 1200 to 1800 UTC, while hourly surface observations are also assimilated at the same time using the more sophisticated ensemble Kalman filter approach. Results show that the simple method for assimilating precipitation data helps the model develop precipitation where it is observed, resulting in the precipitation area being reproduced more accurately than in the run without precipitation-data assimilation, while not negatively influencing the positive results from the surface data assimilation. Improvement is also seen in the reliability of precipitation probabilities for a 1 mm h−1 threshold after the assimilation period, indicating that assimilating precipitation data may provide improved forecasts of the mesoscale environment for a few hours.

Corresponding author address: Dr. David J. Stensrud, National Severe Storms Laboratory, National Weather Center, Rm. 4368, 120 David L. Boren Blvd., Norman, OK 73072. Email: david.stensrud@noaa.gov

Abstract

A simple method to assimilate precipitation data from a synthesis of radar and gauge data is developed to operate alongside an ensemble Kalman filter that assimilates hourly surface observations. The mesoscale ensemble forecast system consists of 25 members with 30-km grid spacing and incorporates variability in both initial and boundary conditions and model physical process schemes. The precipitation assimilation method only incorporates information on when and where rainfall is observed. Model temperature and water vapor mixing ratio profiles at each grid point are modified if rainfall is observed but not predicted, or if rainfall is predicted but not observed. These modifications act to either increase or decrease, respectively, the likelihood that precipitation develops at that grid point.

Two cases are examined in which this technique is applied to assimilate precipitation data every 15 min from 1200 to 1800 UTC, while hourly surface observations are also assimilated at the same time using the more sophisticated ensemble Kalman filter approach. Results show that the simple method for assimilating precipitation data helps the model develop precipitation where it is observed, resulting in the precipitation area being reproduced more accurately than in the run without precipitation-data assimilation, while not negatively influencing the positive results from the surface data assimilation. Improvement is also seen in the reliability of precipitation probabilities for a 1 mm h−1 threshold after the assimilation period, indicating that assimilating precipitation data may provide improved forecasts of the mesoscale environment for a few hours.

Corresponding author address: Dr. David J. Stensrud, National Severe Storms Laboratory, National Weather Center, Rm. 4368, 120 David L. Boren Blvd., Norman, OK 73072. Email: david.stensrud@noaa.gov

Save
  • Alhamed, A., Lakshmivarahan S. , and Stensrud D. J. , 2002: Cluster analysis of multimodel ensemble data from SAMEX. Mon. Wea. Rev., 130 , 226256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., and Anderson S. L. , 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127 , 27412758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atger, F., 1999: The skill of ensemble prediction systems. Mon. Wea. Rev., 127 , 19411953.

  • Baldwin, M. E., and Mitchell K. E. , 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

  • Baldwin, M. E., Kain J. S. , and Kay M. P. , 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17 , 10631079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1993: The Betts–Miller scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 107–121.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Miller M. , and Palmer T. N. , 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartwright, T. J., and Ray P. S. , 1999: Radar-derived estimates of latent heating in the subtropics. Mon. Wea. Rev., 127 , 726742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W., and Holt T. R. , 1994: Impact of assimilating SSM/I rainfall rates on numerical prediction of winter cyclones. Mon. Wea. Rev., 122 , 151164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L., 1988: An initialization for cumulus convection in numerical weather prediction models. Mon. Wea. Rev., 116 , 377385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Zhang F. , Wicker L. J. , Snyder C. , and Crook N. A. , 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 19822005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R., and Baumhefner D. , 1987: Predictability experiments using a high-resolution limited-area model. Mon. Wea. Rev., 115 , 488504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, R. E., Harrison M. S. J. , Graham R. J. , and Mylne K. R. , 2000: Joint medium-range ensembles from the Met. Office and ECMWF systems. Mon. Wea. Rev., 128 , 31043127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5. 1014310162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125 , 13421354.

  • Fritsch, J. M., and Chappell C. F. , 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20 , 910921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Research and development of improved quantitative precipitation forecasts in the warm season. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Hilliker J. , Ross J. , and Vislocky R. L. , 2000: Model consensus. Wea. Forecasting, 15 , 571582.

  • Fujita, T., Stensrud D. J. , and Dowell D. C. , 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135 , 18461868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Guo, Y-R., Kuo Y-H. , Dudhia J. , Parsons D. B. , and Rocken C. , 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128 , 619643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Snyder C. , 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, M. S. J., Palmer T. N. , Richardson D. S. , and Buizza R. , 1999: Analysis and model dependencies in medium-range ensembles: Two transplant case-studies. Quart. J. Roy. Meteor. Soc., 125 , 24872515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., Kalnay E. , and Drogemeier K. K. , 2001: Objective verification of the SAMEX’98 ensemble forecasts. Mon. Wea. Rev., 129 , 7391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishikawa, Y., 2002: Meso-scale analysis. Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency, T. Tsuyuki and T. Fujita, Eds., Japan Meteorological Agency, 26–31.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and Macpherson B. , 1997: A latent heat nudging scheme for the assimilation of precipitation data into the mesoscale model. Meteor. Appl., 4 , 269277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kain, J. S., and Fritsch J. M. , 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49 , 93106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., Lai G. S. , and Manobianco J. , 1998: Impact of initial conditions, rainfall assimilation, and cumulus parameterization on simulations of Hurricane Florence (1988). Mon. Wea. Rev., 126 , 30773101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., Ingles K. , Cocke S. , Kitade T. , and Pasch R. , 1984: Details of low latitude medium range numerical weather prediction using a global spectral model. J. Meteor. Soc. Japan, 62 , 613649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., Xue J. , Bedi H. S. , Ingles K. , and Oosterhof D. , 1991: Physical initialization for numerical weather prediction over the tropics. Tellus, 43AB , 5381.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., Bedi H. S. , and Ingles K. , 1993: Physical initialization using SSM/I rain rates. Tellus, 45A , 247269.

  • Krishnamurti, T. N., Rohaly G. , and Bedi H. S. , 1994: On the improvement of precipitation forecast skill from physical initialization. Tellus, 46A , 598614.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., Baldwin M. E. , Mitchell K. E. , Rogers E. , and DiMego G. J. , 2001: Spring 2001 changes to the NCEP Eta Analysis and Forecast System: Assimilation of observed precipitation. Preprints, 18th Conf. on Weather Analysis and Forecasting and the 14th Conf. on Numerical Weather Prediction, Fort Lauderdale, FL, Amer. Meteor. Soc., J92–J95.

  • MacPherson, B., 2001: Operational experience with assimilation of rainfall data in the Met Office mesoscale model. Meteor. Atmos. Phys., 76 , 38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manobianco, J., Koch S. , Karyampudi V. M. , and Negri A. J. , 1994: The impact of assimilating satellite-derived precipitation rates on numerical simulations of the ERICA IOP 4 cyclone. Mon. Wea. Rev., 122 , 341365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. N., Carter E. F. Jr., and Blue S. T. , 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A , 167194.

  • Mitchell, H. L., and Houtekamer P. L. , 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416433.

  • Mitchell, H. L., Houtekamer P. L. , and Pellerin G. , 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and Kurihara K. , 1987: Forecast experiment of a long-lived meso-α-scale convective system in baiu frontal zone. J. Meteor. Soc. Japan, 65 , 885899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, M. K., and Jewett B. F. , 1999: Ensemble prediction of hurricane Opal’s track and intensity. Preprints, 23rd Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 834–836.

  • Rogers, R. F., and Fritsch J. M. , 1996: A general framework for convective trigger functions. Mon. Wea. Rev., 124 , 24382452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., Fritsch J. M. , and Lambert W. C. , 2000: A simple technique for using radar data in the dynamic initialization of a mesoscale model. Mon. Wea. Rev., 128 , 25602574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and Zhang F. , 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

  • Stensrud, D. J., and Fritsch J. M. , 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122 , 20842104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Bao J-W. , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and Xue M. , 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Treadon, R. E., 1996: Physical initialization in the NMC Global Data Assimilation System. Meteor. Atmos. Phys., 60 , 5786.

  • Wandishin, M. S., Mullen S. L. , Stensrud D. J. , and Brooks H. E. , 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129 , 729747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and Warner T. T. , 1988: Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale-model precipitation forecast: A case study. Mon. Wea. Rev., 116 , 25932613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and Hamill T. M. , 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Academic Press, 464 pp.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., and Coauthors, 2000: A case study of the sensitivity of the Eta Data Assimilation System. Wea. Forecasting, 15 , 603621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and Fritsch J. M. , 1986: Numerical simulation of the meso-beta scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43 , 19131943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and Harvey R. , 1995: Enhancement of extratropical cyclogenesis by a mesoscale convective system. J. Atmos. Sci., 52 , 11071127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133 , 28762893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Snyder C. , and Sun J. , 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Meng Z. , and Aksoy A. , 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134 , 722736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziehmann, C., 2000: Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models. Tellus, 52A , 280299.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Kuo Y-H. , 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev., 124 , 28592882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., and Mesinger F. , 1995: Four-dimensional variational assimilation of precipitation data. Mon. Wea. Rev., 123 , 11121127.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 33 2
PDF Downloads 84 45 10