Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model

Morris L. Weisman National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Morris L. Weisman in
Current site
Google Scholar
PubMed
Close
,
Christopher Davis National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Christopher Davis in
Current site
Google Scholar
PubMed
Close
,
Wei Wang National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Wei Wang in
Current site
Google Scholar
PubMed
Close
,
Kevin W. Manning National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Kevin W. Manning in
Current site
Google Scholar
PubMed
Close
, and
Joseph B. Klemp National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Joseph B. Klemp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Herein, a summary of the authors’ experiences with 36-h real-time explicit (4 km) convective forecasts with the Advanced Research Weather Research and Forecasting Model (WRF-ARW) during the 2003–05 spring and summer seasons is presented. These forecasts are compared to guidance obtained from the 12-km operational Eta Model, which employed convective parameterization (e.g., Betts–Miller–Janjić). The results suggest significant value added for the high-resolution forecasts in representing the convective system mode (e.g., for squall lines, bow echoes, mesoscale convective vortices) as well as in representing the diurnal convective cycle. However, no improvement could be documented in the overall guidance as to the timing and location of significant convective outbreaks. Perhaps the most notable result is the overall strong correspondence between the Eta and WRF-ARW guidance, for both good and bad forecasts, suggesting the overriding influence of larger scales of forcing on convective development in the 24–36-h time frame. Sensitivities to PBL, land surface, microphysics, and resolution failed to account for the more significant forecast errors (e.g., completely missing or erroneous convective systems), suggesting that further research is needed to document the source of such errors at these time scales. A systematic bias is also noted with the Yonsei University (YSU) PBL scheme, emphasizing the continuing need to refine and improve physics packages for application to these forecast problems.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Morris L. Weisman, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: weisman@ncar.ucar.edu

Abstract

Herein, a summary of the authors’ experiences with 36-h real-time explicit (4 km) convective forecasts with the Advanced Research Weather Research and Forecasting Model (WRF-ARW) during the 2003–05 spring and summer seasons is presented. These forecasts are compared to guidance obtained from the 12-km operational Eta Model, which employed convective parameterization (e.g., Betts–Miller–Janjić). The results suggest significant value added for the high-resolution forecasts in representing the convective system mode (e.g., for squall lines, bow echoes, mesoscale convective vortices) as well as in representing the diurnal convective cycle. However, no improvement could be documented in the overall guidance as to the timing and location of significant convective outbreaks. Perhaps the most notable result is the overall strong correspondence between the Eta and WRF-ARW guidance, for both good and bad forecasts, suggesting the overriding influence of larger scales of forcing on convective development in the 24–36-h time frame. Sensitivities to PBL, land surface, microphysics, and resolution failed to account for the more significant forecast errors (e.g., completely missing or erroneous convective systems), suggesting that further research is needed to document the source of such errors at these time scales. A systematic bias is also noted with the Yonsei University (YSU) PBL scheme, emphasizing the continuing need to refine and improve physics packages for application to these forecast problems.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Morris L. Weisman, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: weisman@ncar.ucar.edu

Save
  • Baldwin, M. E., Lakshmivarahan S. , and Kain J. S. , 2001: Verification of mesoscale features in NWP models. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 255–258. [Available online at http://ams.confex.com/ams/pdfpapers/23364.pdf.].

  • Baldwin, M. E., Kain J. S. , and Lakshmivarahan S. , 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133 , 844862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Wyngaard J. C. , and Fritsch J. M. , 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Knievel J. C. , and Parker M. D. , 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134 , 27722792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., Kain J. S. , and Baldwin M. E. , 2006: Bowing convective systems in a popular operational model: Are they for real? Wea. Forecasting, 21 , 307324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Evaluation of the characteristics of the NCAR High-Resolution Land Data Assimilation System. J. Appl. Meteor. Climatol., 46 , 694713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T-C. , 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135 , 34563473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Manning K. W. , Carbone R. E. , Trier S. B. , and Tuttle J. D. , 2003: Coherence of warm-season continental rainfall in numerical prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment (BAMEX): Observations and opportunities. Bull. Amer. Meteor. Soc., 85 , 10751093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. , and Bullock R. , 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134 , 17721784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. , and Bullock R. , 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134 , 17851795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. A. , and Weisman M. L. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5 , 110117. doi:10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., 1990: Toward a science of storm scale prediction. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 256–262.

  • Droegemeier, K. K., 1997: The numerical prediction of thunderstorms: Challenges, potential benefits and results from real-time operational tests. WMO Bull., 46 , 324336.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and McBride J. L. , 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239 , 179202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowle, M. A., and Roebber P. J. , 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18 , 782794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus W. A. Jr., , Correia J. Jr., and Jankov I. , 2005: The 4 June 1999 derecho event: A particularly difficult challenge for numerical weather prediction. Wea. Forecasting, 20 , 705728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M., Straka J. M. , and Rasmussen E. N. , 2004a: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132 , 18971916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M., Straka J. M. , and Rasmussen E. N. , 2004b: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., and Lim J. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Kor. Meteor. Soc., 42 , 129151.

  • Hong, S., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 , 23182341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NOAA/NWS/NCEP Office Note 437, 61 pp.

  • Kain, J. S., Baldwin M. E. , Janish P. R. , Weiss S. J. , Kay M. P. , and Carbin G. W. , 2003: Subjective verification of numerical models as a component of a broader interaction between research and operations. Wea. Forecasting, 18 , 847860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Baldwin M. E. , Carbin G. W. , Bright D. A. , Levit J. J. , and Hart J. A. , 2005: Evaluating high-resolution configurations of the WRF model that are used to forecast severe convective weather: The 2005 SPC/NSSL Spring Program. Preprints, 21st Conf. on Weather Analysis and Forecasting and 17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 2A.5. [Available online at http://ams.confex.com/ams/pdfpapers/94843.pdf.].

    • Crossref
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convective allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21 , 167181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., Ferrier B. S. , Stoelinga M. T. , Szoke E. J. , Weiss S. J. , and Kain J. S. , 2005: The use of simulated radar reflectivity fields in diagnosis of mesoscale phenomena from high-resolution WRF model forecasts. Preprints, 11th Conf. on Mesoscale Processes and 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., J4J.7. [Available online at http://ams.confex.com/ams/pdfpapers/97032.pdf.].

  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparison of coarse and fine grid experiments. Mon. Wea. Rev., 134 , 807833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2007: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part II: Storm-scale experiments. Mon. Wea. Rev., 135 , 759782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116 , 779798.

  • Lin, Y-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., Schultz D. M. , and Romero R. , 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17 , 399429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Thompson, G., Field P. R. , Hall W. D. , and Rasmussen R. M. , 2006: A new bulk microphysical parameterization for WRF (& MRF). Seventh WRF Users’ Workshop, Boulder, CO, NCAR, 5.3. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/WorkshopPapers.htm.].

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , and Manning K. W. , 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., and Hsu H. , 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128 , 22112231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Peterson R. A. , and Treadon R. E. , 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78 , 25992617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., Kain J. S. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2004: Examination of several different versions of the Weather Research and Forecasting (WRF) model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.1. [Available online at http://ams.confex.com/ams/pdfpapers/82052.pdf.].

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Wilson, J. W., and Roberts R. D. , 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134 , 2347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Martin W. J. , 2006a: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134 , 149171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Martin W. J. , 2006b: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134 , 172191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Wang D. , Gao J. , Brewster K. , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139170.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2181 1046 78
PDF Downloads 923 176 19