The Impact of Variational Assimilation of SSM/I and QuikSCAT Satellite Observations on the Numerical Simulation of Indian Ocean Tropical Cyclones

Randhir Singh Atmospheric Sciences Division, Meteorology and Oceanography Group, Space Applications Centre (ISRO), Ahmedabad, India

Search for other papers by Randhir Singh in
Current site
Google Scholar
PubMed
Close
,
P. K. Pal Atmospheric Sciences Division, Meteorology and Oceanography Group, Space Applications Centre (ISRO), Ahmedabad, India

Search for other papers by P. K. Pal in
Current site
Google Scholar
PubMed
Close
,
C. M. Kishtawal Atmospheric Sciences Division, Meteorology and Oceanography Group, Space Applications Centre (ISRO), Ahmedabad, India

Search for other papers by C. M. Kishtawal in
Current site
Google Scholar
PubMed
Close
, and
P. C. Joshi Atmospheric Sciences Division, Meteorology and Oceanography Group, Space Applications Centre (ISRO), Ahmedabad, India

Search for other papers by P. C. Joshi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) with three-dimensional variational data assimilation (3DVAR) is utilized to investigate the influence of Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (QuikSCAT) observations on the prediction of an Indian Ocean tropical cyclone. The 3DVAR sensitivity runs were conducted separately with QuikSCAT wind vectors, SSM/I wind speeds, and total precipitable water (TPW) to investigate their individual impact on cyclone intensity and track. The Orissa supercyclone over the Bay of Bengal during October 1999 was used for simulation and assimilation experiments.

Assimilation of the QuikSCAT wind vector improves the initial position of the cyclone’s center with a position error of 33 km, which was 163 km in the background analysis. Incorporation of QuikSCAT winds was found to increase the air–sea heat fluxes over the cyclonic region, which resulted in the improved simulated intensity when compared with the simulation made without QuikSCAT winds in the initial conditions. The cyclone track improved significantly with assimilation of QuikSCAT wind vectors. The track improvement resulted from relocation of the initial cyclonic vortex after assimilation of QuikSCAT wind vectors.

Like QuikSCAT, assimilation of SSM/I wind speeds strengthened the cyclonic circulation in the initial conditions. This increase in the low-level wind speeds enhanced the air–sea exchange processes and improved the simulated intensity of the cyclone. The lack of information about the wind direction from SSM/I prevented it from making much of an impact on track prediction. As compared to the first guess, assimilation of the SSM/I TPW shows a moistening of the lower troposphere over most of the Bay of Bengal except over the central region of the cyclone, where the assimilation of SSM/I TPW reduces the lower-tropospheric moisture. This decrease of moisture in the TPW assimilation experiment resulted in a weak cyclone intensity.

Corresponding author address: Randhir Singh, Atmospheric Sciences Division, Meteorology and Oceanography Group, Space Applications Centre (ISRO), Ahmedabad 380015, India. Email: randhir_h@yahoo.com

Abstract

In this study, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) with three-dimensional variational data assimilation (3DVAR) is utilized to investigate the influence of Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (QuikSCAT) observations on the prediction of an Indian Ocean tropical cyclone. The 3DVAR sensitivity runs were conducted separately with QuikSCAT wind vectors, SSM/I wind speeds, and total precipitable water (TPW) to investigate their individual impact on cyclone intensity and track. The Orissa supercyclone over the Bay of Bengal during October 1999 was used for simulation and assimilation experiments.

Assimilation of the QuikSCAT wind vector improves the initial position of the cyclone’s center with a position error of 33 km, which was 163 km in the background analysis. Incorporation of QuikSCAT winds was found to increase the air–sea heat fluxes over the cyclonic region, which resulted in the improved simulated intensity when compared with the simulation made without QuikSCAT winds in the initial conditions. The cyclone track improved significantly with assimilation of QuikSCAT wind vectors. The track improvement resulted from relocation of the initial cyclonic vortex after assimilation of QuikSCAT wind vectors.

Like QuikSCAT, assimilation of SSM/I wind speeds strengthened the cyclonic circulation in the initial conditions. This increase in the low-level wind speeds enhanced the air–sea exchange processes and improved the simulated intensity of the cyclone. The lack of information about the wind direction from SSM/I prevented it from making much of an impact on track prediction. As compared to the first guess, assimilation of the SSM/I TPW shows a moistening of the lower troposphere over most of the Bay of Bengal except over the central region of the cyclone, where the assimilation of SSM/I TPW reduces the lower-tropospheric moisture. This decrease of moisture in the TPW assimilation experiment resulted in a weak cyclone intensity.

Corresponding author address: Randhir Singh, Atmospheric Sciences Division, Meteorology and Oceanography Group, Space Applications Centre (ISRO), Ahmedabad 380015, India. Email: randhir_h@yahoo.com

Save
  • Andrews, P. L., and Bell R. S. , 1998: Optimizing the United Kingdom Meteorological Office data assimilation for ERS-1 scatterometer winds. Mon. Wea. Rev., 126 , 736746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J. W., Wilczak J. M. , Choi J. K. , and Kantha L. H. , 2000: Numerical simulation of air–sea interaction under high wind conditions using coupled model: A study of hurricane development. Mon. Wea. Rev., 128 , 21902210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., Huang W. , Guo Y-R. , Bourgeois A. J. , and Xiao Q. N. , 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., Katsaros K. B. , Mestas-Nuñez A. M. , Drennan W. M. , Forde B. E. , and Roquet H. , 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1979: High-resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, Vol. 1, No. 1, J. R. Pfafflin and E. N. Ziegler, Eds., Gordon and Breach, 50–85.

    • Search Google Scholar
    • Export Citation
  • Boutin, J., and Etcheto J. , 1996: Consistency of Geosat, SSM/I, and ERS-1 global surface wind speeds—Comparison with in situ data. J. Atmos. Oceanic Technol., 13 , 183197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. H., 2007: The impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Mon. Wea. Rev., 135 , 549566.

  • Chen, S. H., Vandenberghe F. , Petty G. W. , and Bresch J. F. , 2004: Application of SSM/I satellite data to a hurricane simulation. Quart. J. Roy. Meteor. Soc., 130 , 801825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S. H., Nelkin E. , Ardizzone J. , Atlas R. M. , Ardizzone J. , and Shie C. L. , 2003: Surface turbulent heat and momentum fluxes over global ocean based on Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., Thepaut J. N. , and Hollingsworth A. , 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and Wu W. S. , 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126 , 22872299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., Graber H. C. , and Caruso M. J. , 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19 , 20492062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelen, R. J., and Stephens G. L. , 1999: Characterization of water-vapor retrievals from TOVS/HIRS and SSM/T-2 measurements. Quart. J. Roy. Meteor. Soc., 125 , 331351.

    • Search Google Scholar
    • Export Citation
  • English, S. J., Guillou C. , Prigent C. , and Jones D. C. , 1994: Aircraft measurements of water vapor continuum absorption at millimeter wavelengths. Quart. J. Roy. Meteor. Soc., 120 , 603625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • English, S. J., Renshaw R. J. , Dibben P. C. , Smith A. J. , Rayer P. C. , Poulsen C. , Saunders F. W. , and Eyre J. R. , 2000: A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126 , 29112931.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., Chelton D. B. , Vickers D. , and Sun J. , 1993: An analysis of errors in Special Sensor Microwave Imager evaporation estimated over the global ocean. J. Geophys. Res., 98 , 70817101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escoffier, C., Bates J. J. , Chedin A. , Rossow W. B. , and Schmetz J. , 2001: Comparison of upper tropospheric humidity retrievals from TOVS and METEOSAT. J. Geophys. Res., 106 , 52275238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1990: Bulk parameterization for wind stress and heat fluxes. Surface Waves and Fluxes, Vol. 1, G. L. Geernaert and W. J. Plant, Eds., Kluwer, 91–172.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., Kasper J. F. , Nash R. A. , Price C. F. , and Sutherland A. A. , 1974: Applied Optimal Estimation. The MIT Press, 374 pp.

  • Grell, G. A., Kuo Y. H. , and Pasch R. , 1991: Semiprognostic tests of cumulus parameterization schemes in the middle latitudes. Mon. Wea. Rev., 119 , 531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR, National Center for Atmospheric Research, 122 pp.

  • Halpern, D., 1993: Validation of Special Sensor Microwave Imager monthly-mean wind speed from July 1987 to December 1989. IEEE Trans. Geosci. Remote Sens., 31 , 692699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and Leidner S. M. , 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting, 20 , 476493.

  • Hollinger, J., 1989: DMSP special sensor microwave/imager calibration/validation. Naval Research Laboratory Final Rep., Vol. 1, 153 pp.

  • Huddleston, J. N., and Stiles B. W. , 2000: Multidimensional histogram (MUDH) rain flag. Product description. Version 3.0, Jet Propulsion Laboratory, Pasadena, CA, 8 pp.

  • Ide, K., Courtier P. , Ghil M. , and Lorenc A. C. , 1997: Unified notation for data assimilation: Operational sequential and variational. J. Meteor. Soc. Japan, 75 , 180189.

    • Search Google Scholar
    • Export Citation
  • Isakessen, L., and Stoffelen A. , 2000: ERS scatterometer data in the ECMWF 4D-Var assimilation system. Preliminary studies. Proc. Third ERS Symp., SP-414, Florence, Italy, European Space Agency, 1829–1851.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., Forde E. B. , Chang P. , and Liu W. T. , 2001: QuikSCAT’s SeaWinds facilitates early identification of tropical depressions in 1999 hurricane season. Geophys. Res. Lett., 28 , 10431046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y. H., and Low-Nam S. , 1990: Prediction of nine explosive cyclones over the western Atlantic Ocean with a regional model. Mon. Wea. Rev., 118 , 325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y. H., Shapiro M. A. , and Donall E. G. , 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119 , 368384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leidner, S. M., Isaksen L. , and Holfman R. N. , 2003: Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR assimilation system. Mon. Wea. Rev., 131 , 326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1988: Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. J. Geophys. Res., 93 , 67496760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A. P., and Vesperini M. , 1996: Variational analysis of humidity information from TOVS radiances. Quart. J. Roy. Meteor. Soc., 122 , 15211544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. K., and Katsaros K. B. , 1992: Satellite-derived surface latent heat fluxes in a rapidly intensifying marine cyclone. Mon. Wea. Rev., 120 , 10931107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohanty, U. C., Mandal M. , and Raman S. , 2004: Simulation of Orissa super cyclone (1999) using PSU/NCAR Mesoscale Model. Nat. Hazards, 31 , 373390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z. X., and Braun S. A. , 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129 , 20232039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 2001: Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens., 39 , 24292435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rufenach, C., 1998: Comparison of four ERS-1 scatterometer wind retrieval algorithms with buoys measurements. J. Atmos. Oceanic Technol., 15 , 304313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, S. J., Dunbar R. S. , Hsiao S. V. , and Long D. G. , 1991: A median-filter-based ambiguity removal algorithm for NSCAT. IEEE Trans. Geosci. Remote Sens., 29 , 167174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirtliffe, G., 1999: QuikSCAT science data products user’s manual. Jet Propulsion Laboratory Publ. D-18053, Pasadena, CA, 90 pp.

  • Singh, R., 2004: Satellite observation of boundary layer heat fluxes: Retrieval and variability analysis. Ph.D. thesis, Gujarat University, Ahmedabad, India, 170 pp.

  • Singh, R., Pal P. K. , Kishtawal C. M. , and Joshi P. C. , 2005: Impact of bogus vortex for track and intensity prediction of tropical cyclone. J. Earth Syst. Sci., 114 , 427436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R., Kishtawal C. M. , Pal P. K. , and Joshi P. C. , 2006: Surface heat fluxes over global ocean exclusively from satellite observations. Mon. Wea. Rev., 134 , 965980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomassini, M., LeMeur D. , and Saunders R. W. , 1998: Near-surface satellite wind observations of hurricane and their impact on ECMWF model analyses and forecast. Mon. Wea. Rev., 126 , 12741286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Gautier C. , 1993: Comparison of buoy and SSM/I-derived wind speeds in the tropical Pacific. TOGA Notes, No. 7, Nova Southeastern University, Davie, FL, 1–7.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., Bourassa M. A. , and Tongue J. , 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19 , 738746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102 , 87038718.

  • Xiao, Q., Zou X. , and Kuo Y. H. , 2000: Incorporating the SSM/I-derived precipitable water and rainfall rate into a numerical model: A case study for the ERICA IOP-4 cyclone. Mon. Wea. Rev., 128 , 87108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Zou X. , Pondeca M. , Sharpiro M. A. , and Velden C. , 2002: Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone. Mon. Wea. Rev., 130 , 507528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., Xiao Q. , and Patrick F. , 2007: The impact of multi-satellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev., 135 , 526548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., Wang B. , Ji Z. , Liang X. , Deng G. , and Zhang X. , 2005: Improved track forecasting of typhoon reaching landfall from four-dimensional variational data assimilation of AMSU A retrieved data. J. Geophys. Res., 110 .D14101, doi:10.1029/2004JD005267.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., Zhang D. L. , and Weng F. , 2002: Impact of Advanced Microwave Sounding Unit measurements on hurricane prediction. Mon. Wea. Rev., 130 , 24162432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., and Xiao Q. , 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57 , 836860.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 325 53 5
PDF Downloads 231 40 4