• Anderson, J. L., 1996: A method for producing and evaluating probabilistic precipitation forecasts from ensemble model integrations. J. Climate, 9 , 15181529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atger, F., 2003: Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Mon. Wea. Rev., 131 , 15091523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benoit, R., Desgagne M. , Pellerin P. , Pellerin S. , and Chartier Y. , 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125 , 23832415.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78 , 13.

  • Bright, D. R., Wandishin M. S. , Jewell R. E. , and Weiss S. J. , 2005: A physically based parameter for lightning prediction and its calibration in ensemble forecasts. Preprints, Conf. on Meteor. Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 4.3. [Available online at http://ams.confex.com/ams/pdfpapers/84173.pdf.].

  • Buizza, R., Hollingsworth A. , Lalaurette F. , and Ghelli A. , 1999: Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Wea. Forecasting, 14 , 168189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., Houtekamer P. L. , Toth Z. , Pellerin G. , Wei M. , and Zhu Y. , 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133 , 10761097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., and Talagrand O. , 2005: Evaluation of probabilistic prediction systems for a scalar variable. Quart. J. Roy. Meteor. Soc., 131 , 21312150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and Steenburgh W. J. , 2007: Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Wea. Forecasting, 22 , 13041318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M., Gangopadhyay S. , Hay L. , Rajagopalan B. , and Wilby R. , 2004: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5 , 243262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Carr F. , 2000: Summary of the 1998 Workshop on Mesoscale Model Verification. Bull. Amer. Meteor. Soc., 81 , 809819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., 2005: Ensemble-averaged, probabilistic, and Kalman-filtered regional ozone forecasts. Ph.D. thesis, University of British Columbia, 211 pp.

  • Delle Monache, L., Hacker J. P. , Zhou Y. , Deng X. , and Stull R. B. , 2006: Probabilistic aspects of meteorological and ozone regional ensemble forecasts. J. Geophys. Res., 111 .D24307, doi:10.1029/2005JD006917.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2003: Continuous variables. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Jolliffe and D. B. Stephenson, Eds., Wiley, 97–119.

    • Search Google Scholar
    • Export Citation
  • Du, J., Mullen S. , and Sanders F. , 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., Klemp J. , Skamarock W. C. , Dempsey D. , Janjić Z. I. , Benjamin S. G. , and Brown J. M. , 1998: A collaborative effort towards a future community mesoscale model. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 42–43.

  • Eckel, F. A., and Mass C. F. , 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20 , 328350.

  • Gallus W. A. Jr., , Baldwin M. E. , and Elmore K. L. , 2007: Evaluation of probabilistic precipitation forecasts determined from Eta and AVN forecasted amounts. Wea. Forecasting, 22 , 207215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Rep. TN-398+STR, 121 pp.

  • Grubišić, V., Vellore R. K. , and Huggins A. W. , 2005: Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution. Mon. Wea. Rev., 133 , 28342859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., Krayenhoff E. S. , and Stull R. B. , 2003: Ensemble experiments on numerical weather prediction error and uncertainty for a North Pacific forecast failure. Wea. Forecasting, 18 , 1231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1997: Reliability diagrams for multicategory probabilistic forecasts. Wea. Forecasting, 12 , 736741.

  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129 , 550560.

  • Hamill, T. M., Mullen S. L. , Snyder C. , Toth Z. , and Baumhefner D. P. , 2000: Ensemble forecasting in the short to medium range: Report from a workshop. Bull. Amer. Meteor. Soc., 81 , 26532664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., Kalnay E. , and Droegemeier K. K. , 2001: Objective verification of the SAMEX ‘98 ensemble forecasts. Mon. Wea. Rev., 129 , 7391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and Stephenson D. B. , 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. J. Wiley, 254 pp.

  • Jones, M. S., Colle B. A. , and Tongue J. S. , 2007: Evaluation of a mesoscale short-range ensemble forecast system over the northeast United States. Wea. Forecasting, 22 , 3655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and Murphy A. H. , 1997: Economic Value of Weather and Climate Forecasts. Cambridge University Press, 222 pp.

  • Krzysztofowicz, R., Drzal W. J. , Drake T. R. , Weyman J. C. , and Giordano L. A. , 1993: Probabilistic quantitative precipitation forecasts for river basins. Wea. Forecasting, 8 , 424439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mason, I., 2003: Binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Jolliffe and D. B. Stephenson, Eds., Wiley, 137–163.

    • Search Google Scholar
    • Export Citation
  • Mason, I., and Graham N. E. , 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14 , 713725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., Ovens D. , Westrick K. , and Cole B. , 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83 , 407430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollor, D., and Stull R. , 2008a: Hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain. Wea. Forecasting, 23 , 131144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollor, D., and Stull R. , 2008b: Hydrometeorological short-range ensemble forecasts in complex terrain. Part II: Economic evaluation. Wea. Forecasting, 23 , 557574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMurdie, L., and Mass C. , 2004: Major numerical forecast failures over the northeast Pacific. Wea. Forecasting, 19 , 338356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and Buizza R. , 2002: The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF Ensemble Prediction System. Wea. Forecasting, 17 , 173191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12 , 595600.

  • Murphy, A. H., 1977: The value of climatological, categorical, and probabilistic forecasts in the cost–loss ratio situation. Mon. Wea. Rev., 105 , 803816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1991: Forecast verification: Its complexity and dimensionality. Mon. Wea. Rev., 119 , 15901601.

  • Murphy, A. H., and Winkler R. L. , 1987: A general framework for forecast verification. Mon. Wea. Rev., 115 , 13301338.

  • Nutter, P., Stensrud D. , and Xue M. , 2004: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Wea. Rev., 132 , 23582377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and relative economic value of the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 126 , 649667.

  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127 , 24732489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2003: Economic value and skill. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Jolliffe and D. B. Stephenson, Eds., Wiley, 164–187.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Rep. TN-468+STF, 88 pp.

  • Spagnol, J., Readyhough C. , Stull M. , Mundy J. , Stull R. , Green S. , and Schajer G. , 2004: Rocketsonde buoy system observing system simulation experiments. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction/Symp. on Forecasting the Weather and Climate of the Atmosphere and Ocean, Seattle, WA, Amer. Meteor. Soc., J7.7. [Available online at http://ams.confex.com/ams/pdfpapers/68557.pdf.].

  • Stensrud, D. J., and Yussouf N. , 2007: Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system. Wea. Forecasting, 22 , 317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Bao J. , and Warner T. T. , 2000: Using initial conditions and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swets, J. A., 1988: Measuring the accuracy of diagnostic systems. Science, 240 , 12851293.

  • Swets, J. A., and Pickett R. M. , 1982: Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. Academic Press, 253 pp.

  • Talagrand, O., Vautard R. , and Strauss B. , 1998: Evaluation of probabilistic prediction systems. Proc. Workshop on Predictability, Reading, United Kingdom, ECMWF, 1–25.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., Talagrand O. , Candille G. , and Zhu Y. , 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Jolliffe and D. B. Stephenson, Eds., Wiley, 137–163.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., Mullen S. L. , Stensrud D. J. , and Brooks H. E. , 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129 , 729747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, F., Perreault L. , and Fortin V. , 2006: Measuring the performance of hydrological forecasts for hydropower production at BC Hydro and Hydro-Québec. Preprints, 18th Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc., 8.5. [Available online at http://ams.confex.com/ams/pdfpapers/101960.pdf.].

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wilson, L. J., 2000: Comments on “Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System”. Wea. Forecasting, 15 , 361364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., Mullen S. , Gao X. , Sorooshian S. , Du J. , and Juang H-M. H. , 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM ensemble system. Mon. Wea. Rev., 133 , 279294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and Stensrud D. J. , 2007: Bias-corrected short-range ensemble forecasts of near-surface variables during the 2005/06 cool season. Wea. Forecasting, 22 , 12741286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Toth Z. , Wobus R. , Richardson D. , and Mylne K. , 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83 , 7383.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

Hydrometeorological Short-Range Ensemble Forecasts in Complex Terrain. Part I: Meteorological Evaluation

View More View Less
  • 1 The University of British Columbia, and BC Hydro Corporation, Vancouver, British Columbia, Canada
  • | 2 The University of British Columbia, Vancouver, British Columbia, Canada
Restricted access

Abstract

This paper addresses the question of whether it is better to include lower-resolution members of a nested suite of numerical precipitation forecasts to increase ensemble size, or to utilize high-resolution members only to maximize forecast details in regions of complex terrain. A short-range ensemble forecast (SREF) system is formed from three models running in nested configurations at 108-, 36-, 12-, and 4-km horizontal grid spacings. The forecasts are sampled at 27 precipitation-gauge locations, representing 15 pluvial watersheds in southwestern British Columbia, Canada. This is a region of complex topography characterized by high mountains, glaciers, fjords, and land–ocean boundaries. Matching forecast–observation pairs are analyzed for two consecutive wet seasons: October 2003–March 2004 and October 2004–March 2005. The northwest coast of North America is typically subject to intense landfalling Pacific cyclones and frontal systems during these months.

Using forecast analysis tools that are well designed for SREF systems, it is found that utilizing the full suite of ensemble members, including the lowest-resolution members, produced the highest quality probabilistic forecasts of precipitation. A companion paper assesses the economic value of SREF probabilistic forecasts for hydroelectric operations.

Corresponding author address: Doug McCollor, Dept. of Earth and Ocean Sciences, The University of British Columbia, 6339 Stores Rd., Vancouver, BC V6T 1Z4, Canada. Email: doug.mccollor@bchydro.bc.ca

Abstract

This paper addresses the question of whether it is better to include lower-resolution members of a nested suite of numerical precipitation forecasts to increase ensemble size, or to utilize high-resolution members only to maximize forecast details in regions of complex terrain. A short-range ensemble forecast (SREF) system is formed from three models running in nested configurations at 108-, 36-, 12-, and 4-km horizontal grid spacings. The forecasts are sampled at 27 precipitation-gauge locations, representing 15 pluvial watersheds in southwestern British Columbia, Canada. This is a region of complex topography characterized by high mountains, glaciers, fjords, and land–ocean boundaries. Matching forecast–observation pairs are analyzed for two consecutive wet seasons: October 2003–March 2004 and October 2004–March 2005. The northwest coast of North America is typically subject to intense landfalling Pacific cyclones and frontal systems during these months.

Using forecast analysis tools that are well designed for SREF systems, it is found that utilizing the full suite of ensemble members, including the lowest-resolution members, produced the highest quality probabilistic forecasts of precipitation. A companion paper assesses the economic value of SREF probabilistic forecasts for hydroelectric operations.

Corresponding author address: Doug McCollor, Dept. of Earth and Ocean Sciences, The University of British Columbia, 6339 Stores Rd., Vancouver, BC V6T 1Z4, Canada. Email: doug.mccollor@bchydro.bc.ca

Save