The Temporal Evolution of Convective Indices in Storm-Producing Environments

Timothy J. Wagner Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Timothy J. Wagner in
Current site
Google Scholar
PubMed
Close
,
Wayne F. Feltz Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Wayne F. Feltz in
Current site
Google Scholar
PubMed
Close
, and
Steven A. Ackerman Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Steven A. Ackerman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Temporal changes in stability and shear associated with the development of thunderstorms are quantified using the enhanced temporal resolution of combined Atmospheric Emitted Radiance Interferometer (AERI) thermodynamic profile retrievals and National Oceanic and Atmospheric Administration (NOAA) 404-MHz wind profiler observations. From 1999 to 2003, AERI systems were collocated with NOAA wind profilers at five sites in the southern Great Plains of the United States, creating a near-continuous dataset of atmospheric soundings in both the prestorm and poststorm environments with a temporal resolution of up to 10 min between observations.

Median values for several standard severe weather indices were calculated for tornadic storms and nontornadic supercells. It was found that instability generally increases throughout the preconvective period, reaching a peak roughly 1 h before a tornado forms or a nontornadic supercell forms large hail. Wind shear for both tornadic and nontornadic storms starts to increase roughly 3 h before storm time. However, indices are highly variable between time and space and may not be representative of the environment at large.

Corresponding author address: Timothy J. Wagner, CIMSS, 1225 W. Dayton St., Madison, WI 53706. Email: tjwagner2@wisc.edu

Abstract

Temporal changes in stability and shear associated with the development of thunderstorms are quantified using the enhanced temporal resolution of combined Atmospheric Emitted Radiance Interferometer (AERI) thermodynamic profile retrievals and National Oceanic and Atmospheric Administration (NOAA) 404-MHz wind profiler observations. From 1999 to 2003, AERI systems were collocated with NOAA wind profilers at five sites in the southern Great Plains of the United States, creating a near-continuous dataset of atmospheric soundings in both the prestorm and poststorm environments with a temporal resolution of up to 10 min between observations.

Median values for several standard severe weather indices were calculated for tornadic storms and nontornadic supercells. It was found that instability generally increases throughout the preconvective period, reaching a peak roughly 1 h before a tornado forms or a nontornadic supercell forms large hail. Wind shear for both tornadic and nontornadic storms starts to increase roughly 3 h before storm time. However, indices are highly variable between time and space and may not be representative of the environment at large.

Corresponding author address: Timothy J. Wagner, CIMSS, 1225 W. Dayton St., Madison, WI 53706. Email: tjwagner2@wisc.edu

Save
  • Bedka, K., Petersen R. A. , Feltz W. F. , Velden C. S. , and Mecikalski J. R. , 2006: Statistical relationships between satellite-derived atmospheric motion vector, rawinsonde, and NOAA Wind Profiler Network observations. Preprints, Seventh Int. Symp. on Tropospheric Profiling, Boulder, CO, National Center for Atmospheric Research, 5.17. [Available online at http://www.eol.ucar.edu/istp2006/pdf/5.17A_Bedka_K.pdf.].

  • Benjamin, S. G., Brown J. M. , Brundage K. J. , Schwartz B. E. , Smirnova T. G. , and Smith T. L. , 1998: The operational RUC-2. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 249–252.

  • Brooks, H. E., Doswell C. A. III, and Cooper J. , 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., Klimowski B. A. , Zeitler J. W. , Thompson R. L. , and Weisman M. L. , 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15 , 6179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R. B., and Hassel N. , 1987: Profiler: The next generation surface-based atmospheric sounding system. Preprints, Third Int. Conf on Interactive Information and Processing Systems for Meteorology, New Orleans, LA, Amer. Meteor. Soc., 15–21.

  • Davies-Jones, R. P., 2006: Tornadogenesis in supercell storms: What we know and what we don’t know. Preprints, Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., 2.2. [Available online at http://ams.confex.com/ams/pdfpapers/104563.pdf.].

  • Davies-Jones, R. P., Burgess D. , and Foster M. , 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Doswell C. A. III, , and Rasmussen E. N. , 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., Lazarus S. M. , and Davies-Jones R. , 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121 , 20052029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., and Mecikalski J. R. , 2002: Monitoring high-temporal-resolution convective stability indices using the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas tornado outbreak. Wea. Forecasting, 17 , 445455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Smith W. L. , Knuteson R. O. , Revercomb H. E. , Woolf H. M. , and Howell H. B. , 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37 , 857875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Howell H. B. , Knuteson R. O. , Woolf H. M. , Turner D. D. , Mahon R. , Halther T. D. , and Smith W. L. , 2005: Retrieving temperature and moisture profiles from AERI radiance observations: AERIPROF value-added product technical description. DOE-ARM Tech. Rep. TR-066, 41 pp. [Available online at http://www.arm.gov/publications/tech_reports/arm-tr-066.pdf.].

  • Feltz, W. F., Posselt D. , Mecikalski J. , Wade G. S. , and Schmit T. J. , 2003a: Rapid boundary layer water vapor transitions. Bull. Amer. Meteor. Soc., 84 , 2930.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., Smith W. L. , Howell H. B. , Knuteson R. O. , Woolf H. , and Revercomb H. E. , 2003b: Near-continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42 , 584597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. A., 1993: SVRPLOT: A new method of accessing and manipulating the NCCFC severe weather database. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 40–41.

  • Hart, J. A., and Korotky W. D. , 1991: The SHARP workstation v1.50: A skew T/hodograph analysis and research program for the IBM and compatible PC. NOAA/NWS Forecast Office, Charleston, WV, 62 pp.

  • Johns, R. H., and Doswell C. A. III, 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588612.

  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Tehnol., 21 , 17631776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Tehnol., 21 , 17771789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moller, A. R., 2001: Severe local storms forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

    • Crossref
    • Export Citation
  • Moncrieff, M. W., and Green J. S. A. , 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98 , 336352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and Blanchard D. O. , 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Showalter, A. K., 1953: A stability index for thunderstorm forecasting. Bull. Amer. Meteor. Soc., 34 , 250252.

  • Smith, W. L., Feltz W. F. , Knuteson R. O. , Revercomb H. E. , Woolf H. M. , and Howell H. B. , 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol., 16 , 323333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., Edwards R. , Hart J. A. , Elmore K. L. , and Markowski P. , 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12431261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Feltz W. F. , and Ferrare R. A. , 2000: Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81 , 13011317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Klemp J. B. , 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 411 98 13
PDF Downloads 237 68 12