On the Predictability of Mesoscale Convective Systems: Two-Dimensional Simulations

Matthew S. Wandishin Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Matthew S. Wandishin in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
,
Steven L. Mullen Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Steven L. Mullen in
Current site
Google Scholar
PubMed
Close
, and
Louis J. Wicker NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Louis J. Wicker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale convective systems (MCSs) are a dominant climatological feature of the central United States and are responsible for a substantial fraction of warm season rainfall. Yet very little is known about the predictability of MCSs. To help alleviate this situation, a series of ensemble simulations of an MCS are performed on a two-dimensional, storm-scale (Δx = 1 km) model. Ensemble member perturbations in wind speed, relative humidity, and instability are based on current 24-h forecast errors from the North American Model (NAM). The ensemble results thus provide an upper bound on the predictability of mesoscale convective systems within realistic estimates of environmental uncertainty, assuming successful convective initiation.

The simulations are assessed by considering an ensemble member a success when it reproduces a convective system of at least 20 km in length (roughly the size of two convective cells) within 100 km on either side of the location of the MCS in the control run. By that standard, MCSs occur roughly 70% of the time for perturbation magnitudes consistent with 24-h forecast errors. Reducing the perturbations for all fields to one-half the 24-h error values increases the MCS success rate to over 90%. The same improvement in forecast accuracy would lead to a 30%–40% reduction in maximum surface wind speed uncertainty and a roughly 20% reduction in the uncertainty in maximum updraft strength, and initially slower growth in the uncertainty in the size of the MCS. However, the occurrence of MCSs drops below 50% as the midlayer mean relative humidity falls below 65%. The response of the model to reductions in forecast errors for instability, moisture, and wind speed is not consistent and cannot be easily generalized, but each can have a substantial impact on forecast uncertainty.

Corresponding author address: Matthew Wandishin, NSSL/National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: matt.wandishin@noaa.gov

Abstract

Mesoscale convective systems (MCSs) are a dominant climatological feature of the central United States and are responsible for a substantial fraction of warm season rainfall. Yet very little is known about the predictability of MCSs. To help alleviate this situation, a series of ensemble simulations of an MCS are performed on a two-dimensional, storm-scale (Δx = 1 km) model. Ensemble member perturbations in wind speed, relative humidity, and instability are based on current 24-h forecast errors from the North American Model (NAM). The ensemble results thus provide an upper bound on the predictability of mesoscale convective systems within realistic estimates of environmental uncertainty, assuming successful convective initiation.

The simulations are assessed by considering an ensemble member a success when it reproduces a convective system of at least 20 km in length (roughly the size of two convective cells) within 100 km on either side of the location of the MCS in the control run. By that standard, MCSs occur roughly 70% of the time for perturbation magnitudes consistent with 24-h forecast errors. Reducing the perturbations for all fields to one-half the 24-h error values increases the MCS success rate to over 90%. The same improvement in forecast accuracy would lead to a 30%–40% reduction in maximum surface wind speed uncertainty and a roughly 20% reduction in the uncertainty in maximum updraft strength, and initially slower growth in the uncertainty in the size of the MCS. However, the occurrence of MCSs drops below 50% as the midlayer mean relative humidity falls below 65%. The response of the model to reductions in forecast errors for instability, moisture, and wind speed is not consistent and cannot be easily generalized, but each can have a substantial impact on forecast uncertainty.

Corresponding author address: Matthew Wandishin, NSSL/National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: matt.wandishin@noaa.gov

Save
  • Andre, J. C., and LeSieur M. , 1977: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech., 81 , 19872007.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Brooks, H. E., Doswell C. A. III, and Wicker L. J. , 1993: STORMTIPE: A forecasting experiment using a three-dimensional cloud model. Wea. Forecasting, 8 , 352362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Wyngaard J. C. , and Fritsch J. M. , 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., Kain J. S. , and Baldwin M. E. , 2006: Bowing convective systems in a popular operational model: Are they real? Wea. Forecasting, 21 , 307324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., Taylor C. M. , Thorpe A. J. , Harding R. J. , and Nicholls M. E. , 2003: The influence of spatial variability of boundary-layer moisture on tropical continental squall lines. Quart. J. Roy. Meteor. Soc., 129 , 11011121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Stensrud D. J. , and Wicker L. J. , 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63 , 12311252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Manning K. W. , Carbone R. E. , Trier S. B. , and Tuttle J. B. , 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Derbyshire, S. H., Breau I. , Bechtold P. , Grandpeix J-Y. , Piriou J-M. , Redelsperger J-L. , and Soares P. M. M. , 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Stensrud D. J. , and Crawford K. C. , 2002: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17 , 873884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Kane R. J. , and Chelius C. R. , 1986: The contribution of mesoscale convective weather systems to the warm season precipitation in the United States. J. Appl. Meteor., 25 , 13331345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., Zawadzki I. , and Turner B. , 2006: Predictability of precipitation from continental radar images. Part IV: Limits to predictability. J. Atmos. Sci., 63 , 20922108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and Wicker L. J. , 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126 , 943958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., Straka J. M. , and Rasmussen E. K. , 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61 , 19401952.

  • Hohenegger, C., and Schär C. , 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88 , 17831793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., Lüthi D. , and Schär C. , 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134 , 20952107.

  • Jankov, I., and Gallus W. A. Jr., 2004: MCS rainfall forecast accuracy as a function of large-scale forcing. Wea. Forecasting, 19 , 428439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., Schneider R. S. , and Scofield R. A. , 1995: The meteorological conditions associated with the great Midwest flood of 1993. Preprints, 14th Conf. on Weather Analysis and Forecasting, Dallas, TX, Amer. Meteor. Soc., (J4)13–(J4)17.

  • Khairoutdinov, M., and Randall D. A. , 2003: Cloud resolving modeling of the ARM 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2007: Multiresolution ensemble forecasts of an observed tornadic thunderstorm. Part II: Storm-scale experiments. Mon. Wea. Rev., 135 , 759782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics, and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43 , 126140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116 , 779798.

  • Lin, Y-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22 , 10651092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289305.

  • Moeng, C-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77 , 261278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. K., 1999: Nonlinearity and predictability of convective rainfall associated with water vapor perturbations in a numerically simulated storm. J. Geophys. Res., 104 , 3157531587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. K., and Droegemeier K. K. , 2000: Sensitivity analysis of a 3D convective storm: Implications for variational data assimilation and forecast error. Mon. Wea. Rev., 128 , 140159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelz, R. B., Yakhot V. , Orszag S. , Shtilman L. , and Levich E. , 1985: Velocity–vorticity patterns in turbulent flow. Phys. Rev. Lett., 54 , 25052508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petch, J. C., 2004: The predictability of deep convection in cloud-resolving simulations over land. Quart. J. Roy. Meteor. Soc., 130 , 31713187.

    • Search Google Scholar
    • Export Citation
  • Polifke, W., and Shtilman L. , 1989: The dynamics of helical decaying turbulence. Phys. Fluids A, 1 , 20252033.

  • Randall, D., Khairoutdinov M. , Arakawa A. , and Grabowski W. , 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, G. D., 1967: Some current projects for global meteorological observation and experiment. Quart. J. Roy. Meteor. Soc., 93 , 409418.

  • Rotunno, R., Klemp J. B. , and Weisman M. L. , 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21 , 6985.

  • Stensrud, D. J., and Fritsch J. M. , 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122 , 20842104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Wicker L. J. , 2004: On the predictability of mesoscale convective systems. Preprints, AMOS 11th National Conf., Brisbane, Australia, Australian Meteorological and Oceanographic Society.

  • Tribbia, J. J., and Baumhefner D. P. , 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132 , 703713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walser, A., Lüthi D. , and Schär C. , 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132 , 560577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., Kain J. S. , Wicker L. J. , Davies-Jones R. , Bright D. R. , Levit J. J. , Carbin G. W. , and Baldwin M. E. , 2005: Evaluating the skill of daily explicit predictions of mesocyclones in multiple high-resolution WRF model forecasts during the 2005 SPC/NSSL Spring Program. Preprints, 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., 2M.2. [Available online at http://ams.confex.com/ams/32Rad11Meso/techprogram/paper_97393.htm.].

  • Wicker, L. J., and Wilhelmson R. B. , 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., Kay M. P. , and Foster M. P. , 1997: STORMTIPE-95: Results from a convective storm forecast experiment. Wea. Forecasting, 12 , 388398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Pielke R. A. , 1993: Error-growth dynamics and predictability of surface thermally induced atmospheric flow. J. Atmos. Sci., 50 , 28172844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., Pielke R. A. , and Eykholt R. , 1993: Chaos theory and its applications to the atmosphere. Bull. Amer. Meteor. Soc., 74 , 631644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Odins A. M. , and Nielsen-Gammon J. W. , 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21 , 149166.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 613 295 23
PDF Downloads 138 46 6