Suitability of the Weather Research and Forecasting (WRF) Model to Predict the June 2005 Fire Weather for Interior Alaska

Nicole Mölders Department of Atmospheric Sciences, Geophysical Institute and College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Nicole Mölders in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Standard indices used in the National Fire Danger Rating System (NFDRS) and Fosberg fire-weather indices are calculated from Weather Research and Forecasting (WRF) model simulations and observations in interior Alaska for June 2005. Evaluation shows that WRF is well suited for fire-weather prediction in a boreal forest environment at all forecast leads and on an ensemble average. Errors in meteorological quantities and fire indices marginally depend on forecast lead. WRF’s precipitation performance for interior Alaska is comparable to that of other mesoscale models applied to midlatitudes. WRF underestimates precipitation on average, but satisfactorily predicts precipitation ≥7.5 mm day−1, the threshold considered to reduce interior Alaska’s fire risk for several days. WRF slightly overestimates wind speed, but captures the temporal mean behavior accurately. WRF predicts the temporal evolution of daily temperature extremes, mean relative humidity, air and dewpoint temperature, and daily accumulated shortwave radiation well. Daily minimum (maximum) temperature and relative humidity are slightly overestimated (underestimated). Fire index trends are suitably predicted. Fire indices derived from daily mean predicted meteorological quantities are more reliable than those based on predicted daily extremes. Indirect evaluation by observed fires suggests that WRF-derived NFDRS indices reflect the variability of fire activity.

Corresponding author address: Nicole Mölders, Dept. of Atmospheric Sciences, Geophysical Institute and College of Natural Science and Mathematics, University of Alaska Fairbanks, P.O. Box 757320, 903 Koyukuk Dr., Fairbanks, AK 99775-7320. Email: molders@gi.alaska.edu

Abstract

Standard indices used in the National Fire Danger Rating System (NFDRS) and Fosberg fire-weather indices are calculated from Weather Research and Forecasting (WRF) model simulations and observations in interior Alaska for June 2005. Evaluation shows that WRF is well suited for fire-weather prediction in a boreal forest environment at all forecast leads and on an ensemble average. Errors in meteorological quantities and fire indices marginally depend on forecast lead. WRF’s precipitation performance for interior Alaska is comparable to that of other mesoscale models applied to midlatitudes. WRF underestimates precipitation on average, but satisfactorily predicts precipitation ≥7.5 mm day−1, the threshold considered to reduce interior Alaska’s fire risk for several days. WRF slightly overestimates wind speed, but captures the temporal mean behavior accurately. WRF predicts the temporal evolution of daily temperature extremes, mean relative humidity, air and dewpoint temperature, and daily accumulated shortwave radiation well. Daily minimum (maximum) temperature and relative humidity are slightly overestimated (underestimated). Fire index trends are suitably predicted. Fire indices derived from daily mean predicted meteorological quantities are more reliable than those based on predicted daily extremes. Indirect evaluation by observed fires suggests that WRF-derived NFDRS indices reflect the variability of fire activity.

Corresponding author address: Nicole Mölders, Dept. of Atmospheric Sciences, Geophysical Institute and College of Natural Science and Mathematics, University of Alaska Fairbanks, P.O. Box 757320, 903 Koyukuk Dr., Fairbanks, AK 99775-7320. Email: molders@gi.alaska.edu

Save
  • Alaska Climate Center, cited. 2007: The Alaska Climate Research Center. [Available online at http://climate.gi.alaska.edu/.].

  • Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111 , 13061335.

  • Anthes, R. A., Kuo Y. H. , Hsie E. Y. , Low-Nam S. , and Bettge T. W. , 1989: Estimation of skill and uncertainty in regional numerical models. Quart. J. Roy. Meteor. Soc., 115 , 763806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berdeklis, P., and List R. , 2001: The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci., 58 , 27512770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boles, S. H., and Verbyla D. L. , 2000: Comparison of three AVHRR-based fire detection algorithms for interior Alaska. Remote Sens. Environ., 72 , 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgan, R. E., 1988: Revisions to the 1978 National Fire-danger Rating System. Southeast Forest Experiment Station Research Paper SE-273, USDA Forest Service, Macon, GA, 39 pp.

    • Crossref
    • Export Citation
  • Carlson, J. D., and Burgan R. E. , 2003: Review of users’ needs in operational fire-danger estimation: The Oklahoma example. Int. Remote Sens., 24 , 16011620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and Steenburgh W. J. , 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta Models over the western United States. Wea. Forecasting, 20 , 812821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. D., and Deeming J. E. , 1985: The National Fire-Danger Rating System: Basic equations. General Tech. Rep. PSW-82, Pacific Southwest Forest and Range Experiment Station, Berkley, CA, 17 pp.

    • Crossref
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. , and Bullock R. , 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134 , 17721784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deeming, J. E., Burgan R. E. , and Cohen J. D. , 1977: The National Fire-Danger Rating System—1978. Intermountain Forest and Range Experiment Station General Tech. Rep. INT-39, USDA Forest Service, Ogden, UT, 63 pp.

  • Done, J., Davis C. A. , and Weisman M. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5 , 110117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fehr, T., Dotzek N. , and Hoeller H. , 2003: Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms. Atmos. Res., 76 , 167189.

    • Search Google Scholar
    • Export Citation
  • Fosberg, M. A., 1978: Weather in wildland fire management: The fire weather index. Proc. Conf. on Sierra Nevada Meteorology, South Lake Tahoe, CA, Amer. Meteor. Soc., 1–4.

  • Goodrick, S. L., 2002: Modification of the Fosberg fire weather index to include drought. Int. J. Wildfire, 11 , 205211.

  • Grell, G. A., Peckham S. E. , Schmitz R. , McKeen S. A. , Frost G. , Skamarock W. C. , and Eder B. , 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39 , 69576975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1994: Mesoscale meteorological model evaluation techniques with emphasis on needs of air quality models. Mesoscale Modeling of the Atmosphere, Meteor. Monogr., No. 47, Amer. Meteor. Soc., 47–58.

    • Search Google Scholar
    • Export Citation
  • Hess, J. C., Scott C. A. , Hufford G. L. , and Fleming M. D. , 2001: El Niño and its impact on fire weather conditions in Alaska. J. Wildland Fire, 10 , 113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoadley, J. L., Westrick K. , Ferguson S. A. , Goodrick S. L. , Bradshaw L. , and Werth P. , 2004: The effect of model resolution in predicting meteorological parameters used in fire-danger rating. J. Appl. Meteor., 43 , 13331347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoadley, J. L., Rorig M. L. , Bradshaw L. , Ferguson S. A. , Westrick K. J. , Goodrick S. L. , and Werth P. , 2006: Evaluation of MM5 model resolution when applied to prediction of national fire-danger rating indexes. Int. J. Wildland Fire, 15 , 147154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hufford, G. L., Kelley H. L. , Sparkman W. , and Moore R. K. , 1998: Use of real-time multisatellite and radar data to support forest fire management. Wea. Forecasting, 13 , 592605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Brigh D. R. , 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21 , 167181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keetch, J. J., and Byram G. M. , 1968: A drought index for forest fire control. Research Paper SE-38. U.S. Dept. of Agriculture, Ashville, NC, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and Skamarock W. C. , 2004: Model numerics for convective-storm simulation. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens Eds., Cambridge University Press, 117–137.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., Skamarock W. C. , and Dudhia J. , 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135 , 28972913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., Ahijevych D. A. , and Manning K. W. , 2004: Using temporal modes of rainfall to evaluate the performance of a numerical weather prediction model. Mon. Wea. Rev., 132 , 29953009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, B. I., Ortiz F. , and McClure R. , 2005a: Alaska snow survey report—April 2005. Natural Resources Conservation Service, 34 pp.

  • Knight, B. I., Ortiz F. , and McClure R. , 2005b: Alaska snow survey report—May 2005. Natural Resources Conservation Service, 34 pp.

  • Kusaka, H., Crook A. , Dudhia J. , and Wada K. , 2005: Comparison of the WRF and MM5 models for simulation of heavy rainfall along the Baiu front. Sci. Online Lett. Atmos., 1 , 177180.

    • Search Google Scholar
    • Export Citation
  • Lynch, J. A., Clark J. S. , Bigelow N. H. , Edwards M. E. , and Finney B. P. , 2003: Geographic and temporal variations in fire history in boreal ecosystems of Alaska. J. Geophys. Res., 108 .8D152, doi:10.1029/2001JD000332.

    • Search Google Scholar
    • Export Citation
  • McGuiney, E., Shulski M. , and Wendler G. , 2005: Alaska lightning climatology and application to wildfire science. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 2.14. [Available online at http://ams.confex.com/ams/pdfpapers/85059.pdf.].

  • Michalakes, J., Chen S. , Dudhia J. , Hart L. , Klemp J. , Middlecoff J. , and Skamarock W. , 2001: Development of a next generation regional weather research and forecast model. Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, Singapore, 269-276.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., Dudhia J. , Gill D. , Henderson T. , Klemp J. , Skamarock W. , and Wang W. , 2004: The Weather Research and Forecast Model: Software architecture and performance. Proc. 11th Workshop on the Use of High Performance Computing in Meteorology, Reading, United Kingdom, ECMWF, 13 pp. [Available online at http://www.wrf-model.org/wrfadmin/docs/ecmwf_2004.pdf.].

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102D , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and Romanovsky V. E. , 2006: Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme’s frozen ground/permafrost component using observations at Barrow, Alaska. J. Geophys. Res., 111 .D04105, doi:10.1029/2005JD005957.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and Kramm G. , 2007: Influence of wildfire induced land-cover changes on clouds and precipitation in interior Alaska—A case study. Atmos. Res., 84 , 142168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölders, N., Jankov M. , and Kramm G. , 2005: Application of Gaussian error propagation principles for theoretical assessment of model uncertainty in simulated soil processes caused by thermal and hydraulic parameters. J. Hydrometeor., 6 , 10451062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Wildfire Coordinating Group, 2002: Gaining a basic understanding of the National Fire Danger Rating System—A self-study reading course. National Wildfire Coordinating Group, 73 pp. [Available online at http://www.nationalfiretraining.net/ca/nctc/prework/nfdrs_pre_study.pdf.].

  • Roads, J., Fujioka F. , Chen S. , and Burgan R. , 2005: Seasonal fire-danger forecasts for the USA. Int. J. Wildland Fire, 14 , 118.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Baker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Smirnova, T. G., Brown J. M. , and Benjamin S. G. , 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125 , 18701884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smironova, T. G., Brown J. M. , Benjamin S. G. , and Kim D. , 2000: Parameterization of cold season processes in the MAPS land-surface scheme. J. Geophys. Res., 105D , 40774086.

    • Search Google Scholar
    • Export Citation
  • Speer, M. S., Leslie L. M. , Colquhoun J. R. , and Mitchell E. , 1996: The Sydney Australia wildfires of January 1994—Meteorological conditions and high resolution numerical modeling experiments. Int. J. Wildland Fire, 6 , 145154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, J. B., 1977: Evaporation from the wet canopy of a pine forest. Water Resour. Res., 13 , 915921.

  • Stocks, B. J., Fosberg M. A. , Lynham T. J. , Means L. , Wotton B. M. , and Yang Q. , 1998: Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38 , 113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocks, B. J., Fosberg M. A. , Wotten M. B. , Lynham T. J. , and Ryan K. C. , 2000: Climate change and forest fire activity in North American boreal forests. Fire, Climate Change, and Carbon Cycling in North American Boreal Forest, E. S. Kasischke and B. J. Stocks, Eds., Springer, 368–376.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidal, A., Pinglo F. , Durand H. , Devaux-Ros C. , and Maillet A. , 1994: Evaluation of a temporal fire-risk index in Mediterranean forests from NOAA thermal IR. Remote Sens. Environ., 49 , 296303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Westerling, A. L., Gershunov A. , Brown T. J. , Cayan D. R. , and Dettinger M. D. , 2003: Climate and wildfire in the western United States. Bull. Amer. Meteor. Soc., 84 , 595604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and Skamarock W. C. , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences. Academic Press, 467 pp.

  • World Meteorological Organization, 1974: Guide to Hydrometeorological Practices. 3rd ed. WMO Tech. Rep. 82, Geneva, Switzerland, 123 pp.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and Fast J. , 2003: An evaluation of the MM5, RAMS, and meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake valley. Mon. Wea. Rev., 131 , 13011322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., In H. J. , Bian X. , Charney J. , Heilman W. , and Potter B. , 2005: Evaluation of real-time high-resolution MM5 predictions over the Great Lakes region. Wea. Forecasting, 20 , 6381.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 795 160 15
PDF Downloads 408 102 14