• Andrieu, H., Delrieu G. , and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part II: Formulation. J. Appl. Meteor., 34 , 240259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., Zrnić D. S. , Goldhirsh J. , and Rowland J. , 1989: Comparison of simulated rain rates from disdrometer data employing polarimetric radar algorithms. J. Atmos. Oceanic Technol., 6 , 476486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, A., Lee G. , and Zawadzki I. , 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44 , 9981015.

  • Bellon, A., Lee G. , Kilambi A. , and Zawadzki I. , 2007: Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet. J. Appl. Meteor. Climatol., 46 , 726741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., Corral C. , Sanchez-Diezma R. , and Sempere-Torres D. , 2005: Hydrological validation of a radar-based nowcasting technique. J. Hydrometeor., 6 , 532549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., Sempere-Torres D. , Sanchez-Diezma R. , Pegram G. , Zawadzki I. , and Seed A. , 2006: Modelization of the uncertainty associated to radar-based nowcasting techniques. Impact in flow simulation. Proc. Fourth European Conf. on Radar in Meteorology and Hydrology (ERAD), Barcelona, Spain, Group of Applied Research on Hydrometeorology–Universitat Politècnica de Catalunya (GRAHI–UPC), 575–578.

  • Caya, A., Sun J. , and Snyder C. , 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133 , 30813094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, K-S., Zawadzki I. , Yau M. K. , and Fillion L. , 2007: Initialization of midlatitude convective storms by assimilation of single Doppler radar observations. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P5.5. [Available online at http://ams.confex.com/ams/pdfpapers/122990.pdf.].

  • Ciach, G. J., and Krajewski W. F. , 1999: On the estimation of radar rainfall error variance. Adv. Water Res., 22 , 585595.

  • Ciach, G. J., Krajewski W. F. , and Villarini G. , 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8 , 13251347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, C., 1986: Accuracy of rainfall estimates by radar, Part I: Calibration by telemetering raingauges. J. Hydrol., 83 , 207223.

  • Crook, N. A., and Sun J. Z. , 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol., 19 , 888898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 471 pp.

  • Deblonde, G., Mahfouf J. F. , and Bilodeau B. , 2007: One-dimensional variational data assimilation of SSM/I observations in rainy atmospheres at MSC. Mon. Wea. Rev., 135 , 152172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., Fillion L. , Nychka D. , and Lu Z. Q. , 2000: Some statistical considerations associated with the data assimilation of precipitation observations. Quart. J. Roy. Meteor. Soc., 126 , 339359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., Austin G. L. , and Tees D. , 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor. Soc., 118 , 435453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fillion, L., and Errico R. , 1997: Variational assimilation of precipitation data using moist convective parameterization schemes: A 1DVAR study. Mon. Wea. Rev., 125 , 29172942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and Joss J. , 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41 , 542557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., Berenguer M. , Sempere-Torres D. , and Salvadè G. , 2006: Ensemble radar precipitation estimation—A new topic on the radar horizon. Proc. Fourth European Conf. on Radar in Meteorology and Hydrology (ERAD), Barcelona, Spain, Group of Applied Research on Hydrometeorology–Universitat Politècnica de Catalunya (GRAHI–UPC), 559–562.

  • Guo, Y. R., Kuo Y. H. , Dudhia J. , Parsons D. , and Rocken C. , 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128 , 619643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., and Xue M. , 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135 , 507525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huggel, A., Schmid W. , and Waldvogel A. , 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35 , 16881701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, P. W., Seed A. W. , and Weinmann P. E. , 2003: A stochastic model of radar measurement error in rainfall accumulations at catchment scale. J. Hydrometeor., 4 , 841855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1990: Precipitation measurement and hydrology. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Kitchen, M., and Blackall R. M. , 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134 , 1333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and Jackson P. M. , 1993: Weather radar performance at long range—Simulated and observed. J. Appl. Meteor., 32 , 975985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45 , 37413753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koistinen, J., Michelson D. B. , Hohti H. , and Peura M. , 2003: Operational measurement of precipitation in cold climates. Weather Radar—Principles and Advanced Applications, P. Meishcner, Ed., Springer, 78–114.

    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., 1998: Probabilistic hydrometeorological forecasts: Toward a new era in operational forecasting. Bull. Amer. Meteor. Soc., 79 , 243251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., 2002: Probabilistic flood forecast: Bounds and approximations. J. Hydrol., 268 , 4155.

  • Lee, G. W., and Zawadzki I. , 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44 , 241255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2006: Radar calibration by gage, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J. Hydrol., 328 , 8397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., Seed A. , and Zawadzki I. , 2007: Modeling the variability of drop size distributions in space and time. J. Appl. Meteor. Climatol., 46 , 742756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacPherson, B., 2001: Operational experience with assimilation of rainfall data in the Met Office mesoscale model. Meteor. Atmos. Phys., 76 , 38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacPherson, B., and Coauthors, 2003: Assimilation of radar data in numerical weather predicition (NWP) models. Weather Radar—Principles and Advanced Applications, P. Meischner, Ed., Springer, 78–114.

    • Search Google Scholar
    • Export Citation
  • Marecal, V., and Mahfouf J. F. , 2000: Variational retrieval of temperature and humidity profiles from TRMM precipitation data. Mon. Wea. Rev., 128 , 38533866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Mittermaier, M., Hogan R. J. , and Illingworth A. , 2004: Using mesoscale winds for correcting wind-drift errors in radar estimates of surface rainfall. Quart. J. Roy. Meteor. Soc., 130 , 21052123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montmerle, T., Caya A. , and Zawadzki I. , 2001: Simulation of a midlatitude convective storm initialized with bistatic Doppler radar data. Mon. Wea. Rev., 129 , 19491967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, C., Bowler N. , Seed A. W. , Jones A. , Jones D. , and Moore R. , 2005: Use of a stochastic precipitation nowcast scheme for fluvial flood forecasting and warning. Atmos. Sci. Lett., 6 , 7883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, W. G., and Crozier C. L. , 1983: Precipitation measurement with a C-band weather radar in southern Ontario. Atmos.–Ocean, 21 , 125137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Diezma, R., Zawadzki I. , and Sempere-Torres D. , 2000: Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res., 105 , 22252236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 1990: Measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7 , 255268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and Joe P. I. , 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11 , 874887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1993: A modeling study of rainfall rate reflectivity relationships. Water Resour. Res., 29 , 25052514.

  • Sun, J., 2005a: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131 , 34393463.

  • Sun, J., 2005b: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133 , 793813.

  • Sun, J., and Crook N. A. , 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Wilson J. W. , 2003: The assimilation of radar data for weather prediction. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 175–198.

    • Crossref
    • Export Citation
  • Vignal, B., Andrieu H. , and Creutin J. D. , 1999: Identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor., 38 , 12141228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Waldvogel, A., Henrich W. , and Mosimann L. , 1993: New insight into the coupling between snow spectra and raindrop size distributions. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 602–604.

  • Wilson, J. W., and Brandes E. A. , 1979: Radar measurement of rainfall—Summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q. N., Kuo Y. H. , Sun J. Z. , Lee W. C. , Barker D. M. , and Lim E. , 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46 , 1422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., Nai K. , and Wei L. , 2007: An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc., 133 , 407415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1973: Statistical properties of precipitation patterns. J. Appl. Meteor., 12 , 459472.

  • Zawadzki, I., 1975: On radar–raingage comparison. J. Appl. Meteor., 14 , 14301436.

  • Zawadzki, I., 1984: Factors affecting the precision of radar measurements of rain. Preprints, 22nd Int. Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

  • Zawadzki, I., and Lee G. W. , 2004: The physical causes of the variability of drop size distrobutions. 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Association of Meteorology and Atmospheric Sciences, 698–701.

  • Zawadzki, I., Szyrmer W. , Bell C. , and Fabry F. , 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62 , 37053723.

  • Županski, D., and Mesinger F. , 1995: Four-dimensional variational assimilation of precipitation data. Mon. Wea. Rev., 123 , 11121127.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

A Study of the Error Covariance Matrix of Radar Rainfall Estimates in Stratiform Rain

View More View Less
  • 1 J. S. Marshall Radar Observatory, McGill University, Montreal, Quebec, Canada
Restricted access

Abstract

The contribution of various physical sources of uncertainty affecting radar rainfall estimates at the ground is quantified toward deriving and understanding the error covariance matrix of these estimates. The focus here is on stratiform precipitation at a resolution of 15 km, which is most relevant for data assimilation onto mesoscale numerical models. In the characterization of the error structure, the following contributions are considered: (i) the individual effect of the range-dependent error (associated with beam broadening and increasing height of radar measurements with range), (ii) the error associated with the transformation from reflectivity to rain rate due to the variability of drop size distributions, and (iii) the interaction of the first two, that is, the term resulting from the cross correlation between the effects of the range-dependent error and the uncertainty related to the variability of drop size distributions (DSDs).

For this purpose a large database of S-band radar observations at short range (where reflectivity near the ground is measured and the beam is narrow) is used to characterize the range-dependent error within a simulation framework, and disdrometric measurements collocated with the radar data are used to assess the impact of the variability of DSDs. It is noted that these two sources of error are well correlated in the vicinity of the melting layer as result of the physical processes that determine the density of snow (e.g., riming), which affect both the DSD variability and the vertical profile of reflectivity.

Corresponding author address: Marc Berenguer, 805 Sherbrooke St. West, Montreal, QC H3A2K6, Canada. Email: berenguer@meteo.mcgill.ca

Abstract

The contribution of various physical sources of uncertainty affecting radar rainfall estimates at the ground is quantified toward deriving and understanding the error covariance matrix of these estimates. The focus here is on stratiform precipitation at a resolution of 15 km, which is most relevant for data assimilation onto mesoscale numerical models. In the characterization of the error structure, the following contributions are considered: (i) the individual effect of the range-dependent error (associated with beam broadening and increasing height of radar measurements with range), (ii) the error associated with the transformation from reflectivity to rain rate due to the variability of drop size distributions, and (iii) the interaction of the first two, that is, the term resulting from the cross correlation between the effects of the range-dependent error and the uncertainty related to the variability of drop size distributions (DSDs).

For this purpose a large database of S-band radar observations at short range (where reflectivity near the ground is measured and the beam is narrow) is used to characterize the range-dependent error within a simulation framework, and disdrometric measurements collocated with the radar data are used to assess the impact of the variability of DSDs. It is noted that these two sources of error are well correlated in the vicinity of the melting layer as result of the physical processes that determine the density of snow (e.g., riming), which affect both the DSD variability and the vertical profile of reflectivity.

Corresponding author address: Marc Berenguer, 805 Sherbrooke St. West, Montreal, QC H3A2K6, Canada. Email: berenguer@meteo.mcgill.ca

Save