A Study in Weather Model Output Postprocessing: Using the Boosting Method for Thunderstorm Detection

Donat Perler Department of Computer Science, Institute of Computational Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Donat Perler in
Current site
Google Scholar
PubMed
Close
and
Oliver Marchand Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland

Search for other papers by Oliver Marchand in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this work, a new approach to weather model output postprocessing is presented. The adaptive boosting algorithm is used to train a set of simple base classifiers with historical data from weather model output, surface synoptic observation (SYNOP) messages, and lightning data. The resulting overall method then can be used to classify weather model output to identify potential thunderstorms. The method generates a certainty measure between −1 and 1, describing how likely a thunderstorm is to occur. Using a threshold, the measure can be converted to a binary decision. When compared to a linear discriminant and a method currently employed in an expert system from the German Weather Service, boosting achieves the best validation scores. A substantial improvement of the probability of detection of up to 72% and a decrease of the false alarm rate down to 34% can be achieved for the identification of thunderstorms in model analysis. Independent of the verification results, the method has several useful properties: good cross-validation results, short learning time (≤10 min sequential run time for the experiments on a standard PC), comprehensible inner values of the underlying statistical analysis, and the simplicity of adding predictors to a running system. This paper concludes with a set of possible other applications and extensions to the presented example of thunderstorm detection.

* Current affiliation: Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, Switzerland

+ Current affiliation: Fisch Asset Management, Zurich, Switzerland

Corresponding author address: Oliver Marchand, Fisch Asset Management, Bellerieve 241, 8034 Zurich, Switzerland. Email: oliver.marchand@gmail.com

Abstract

In this work, a new approach to weather model output postprocessing is presented. The adaptive boosting algorithm is used to train a set of simple base classifiers with historical data from weather model output, surface synoptic observation (SYNOP) messages, and lightning data. The resulting overall method then can be used to classify weather model output to identify potential thunderstorms. The method generates a certainty measure between −1 and 1, describing how likely a thunderstorm is to occur. Using a threshold, the measure can be converted to a binary decision. When compared to a linear discriminant and a method currently employed in an expert system from the German Weather Service, boosting achieves the best validation scores. A substantial improvement of the probability of detection of up to 72% and a decrease of the false alarm rate down to 34% can be achieved for the identification of thunderstorms in model analysis. Independent of the verification results, the method has several useful properties: good cross-validation results, short learning time (≤10 min sequential run time for the experiments on a standard PC), comprehensible inner values of the underlying statistical analysis, and the simplicity of adding predictors to a running system. This paper concludes with a set of possible other applications and extensions to the presented example of thunderstorm detection.

* Current affiliation: Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, Switzerland

+ Current affiliation: Fisch Asset Management, Zurich, Switzerland

Corresponding author address: Oliver Marchand, Fisch Asset Management, Bellerieve 241, 8034 Zurich, Switzerland. Email: oliver.marchand@gmail.com

Save
  • Adedokun, J., 1982: On an instability index relevant to precipitation forecasting in West Africa. Arch. Meteor. Geophys. Bioklimatol., A31 , 221230.

    • Search Google Scholar
    • Export Citation
  • Andersson, T., Andersson M. , Jacobsson C. , and Nilsson S. , 1989: Thermodynamic indices for forecasting thunderstorms in southern Sweden. Meteor. Mag., 116 , 141146.

    • Search Google Scholar
    • Export Citation
  • Avnimelech, R., and Intrator N. , 1999: Boosting regression estimators. Neural Comput., 11 , 491513.

  • Bacon, D. P., Ahmad N. N. , Dunn T. J. , Monteith C. M. , and Sarma A. , 2007: An Operational multiscale system for hazards prediction, mapping, and response. Nat. Hazards, 44 , 317327. doi:10.1007/s11069-007-9132-3.

    • Search Google Scholar
    • Export Citation
  • Bothwell, P., 2005: Development of an operational statistical scheme to predict the location and intensity of lightning. Preprints, Conf. on Meteor. Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 4.2. [Available online at http://ams.confex.com/ams/pdfpapers/85013.pdf.].

    • Search Google Scholar
    • Export Citation
  • Bright, D., Wandishin M. , Jewell R. , and Weiss S. , 2005: A physically based parameter for lightning prediction and its calibration in ensemble forecasts. Preprints, Conf. on Meteor. Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 4.3. [Available online at http://ams.confex.com/ams/pdfpapers/84173.pdf.].

    • Search Google Scholar
    • Export Citation
  • Burrows, W. R., Price C. , and Wilson L. J. , 2005: Warm season lightning probability prediction for Canada and the northern United States. Wea. Forecasting, 20 , 971988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calas, C., Ducrocq V. , and Sénési S. , 2000: Mesoscale analyses and diagnostic parameters for deep convection nowcasting. Meteor. Appl., 7 , 145161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colquhoun, J., 1987: A decision tree method of forecasting thunderstorms, severe thunderstorms and tornadoes. Wea. Forecasting, 2 , 337345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., Tzanos D. , and Sénési S. , 1998: Diagnostic tools using a mesoscale NWP model for the early warning of convection. Meteor. Appl., 5 , 329349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., Lapore J-P. , Redelsperger J-L. , and Orain F. , 2000: Initialization of a fine-scale model for convective-system prediction: A case study. Quart. J. Roy. Meteor. Soc., 126 , 30413065. doi:10.1256/smsqj.57003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Stensrud D. J. , and Crawford K. C. , 2002: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17 , 873884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freund, Y., and Schapire R. , 1997: A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci., 55 , 119139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H., and Lowry D. , 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11 , 12031211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and Coauthors, 2002: An operational multiscale hurricane forecasting system. Mon. Wea. Rev., 130 , 18301847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haklander, A. J., and Van Delden A. , 2003: Thunderstorm predictors and their forecast skill for the Netherlands. Atmos. Res., 67–68 , 273299.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., Tibshirani R. , and Friedman J. , 2003: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer-Verlag, 536 pp.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and Crane R. G. , 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22 , 1326.

  • Hoke, J., and Anthes R. , 1976: The initialization of numerical models by a dynamic-initialization technique. Mon. Wea. Rev., 104 , 15511556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, K., 2001: Development of MOS thunderstorm and severe thunderstorm forecast equations with multiple data sources. Preprints, 18th Conf. on Weather Analysis and Forecasting, Fort Lauderdale, FL, Amer. Meteor. Soc., 191–195.

    • Search Google Scholar
    • Export Citation
  • Hughes, K., 2002: Automated gridded forecast guidance for thunderstorms and severe local storms based on the Eta model. Preprints, 19th Conf. on Weather Analysis and Forecasting, San Antonio, TX, Amer. Meteor. Soc., J19–J22.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H. I., 1995: Zur Bildung, Verteilung und Vorhersage von Gewittern in der Schweiz. Ph.D. thesis, Eidgenöessische Technische Hochschule Dissertation 11020, Zurich, Switzerland, 246 pp.

  • Jolliffe, I. T., and Stephenson D. B. , Eds. 2003: Forecast Verification: A Pracitioner’s Guide in Atmospheric Science. John Wiley and Sons, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Kretzschmar, R., Eckert P. , Cattani D. , and Eggimann F. , 2004: Neural network classifiers for local wind prediction. J. Appl. Meteor., 43 , 727738.

  • Kretzschmar, R., Eckert P. , and Cattani D. , 2005: Identification of characteristic weather situations for the prediction of local rain events. MeteoSwiss Rep., Zurich, Switzerland, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Landberg, L., 2001: Short-term prediction of local wind conditions. J. Wind Eng. Indust. Aerodyn., 89 , 235245.

  • Landberg, L., and Watson S. J. , 1994: Short-term prediction of local wind conditions. Bound.-Layer Meteor., 70 , 171195.

  • Manzato, A., 2005: The use of sounding-derived indices for a neural network short-term thunderstorm forecast. Wea. Forecasting, 20 , 896917.

  • Müller, G., 1986: Handbuch für Beobachter des automatischen Beobachtungsnetzes. Schweizerische Meteorologische Anstalt, Zurich, Switzerland, 171 pp.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1971: The tunderstorm forecasting system at the Kennedy Space Center. J. Appl. Meteor., 10 , 747764.

  • Perler, D., 2006: Automatic weather interpretation using modern classification algorithms. M.S. thesis, Dept. of Computer Science, ETH Zurich, Zurich, Switzerland, 81 pp.

  • Reap, R. M., 1991: Climatological characteristics and objective prediction of thunderstorms over Alaska. Wea. Forecasting, 6 , 309319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and Foster D. S. , 1979: Automated 12–36 hour probability forecasts of thunderstorms and severe local storms. J. Appl. Meteor., 18 , 13041315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schättler, U., and Montani A. , Eds. 2005: Consortium for Small-Scale Modelling Newsletter. No. 5, DWD, Offen-bach, Germany, 182 pp. [Available online at http://cosmo-model.cscs.ch/content/model/documentation/newsLetters/newsLetter05/newsLetter_05.pdf.].

    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., Appenzeller C. , Eckert P. , and Cattani D. , 2004: Analysis of the spread–skill relations using the ECMWF Ensemble Prediction System over Europe. Wea. Forecasting, 19 , 552565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1995: Manual on Codes. Vol. I.1, WMO-No. 306, 156 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 207 86 1
PDF Downloads 160 43 3