Evaluation of Short-Range Quantitative Precipitation Forecasts from a Time-Lagged Multimodel Ensemble

Huiling Yuan Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Huiling Yuan in
Current site
Google Scholar
PubMed
Close
,
Chungu Lu NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Chungu Lu in
Current site
Google Scholar
PubMed
Close
,
John A. McGinley NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by John A. McGinley in
Current site
Google Scholar
PubMed
Close
,
Paul J. Schultz NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Paul J. Schultz in
Current site
Google Scholar
PubMed
Close
,
Brian D. Jamison NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Brian D. Jamison in
Current site
Google Scholar
PubMed
Close
,
Linda Wharton NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Linda Wharton in
Current site
Google Scholar
PubMed
Close
, and
Christopher J. Anderson NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Christopher J. Anderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Short-range quantitative precipitation forecasts (QPFs) and probabilistic QPFs (PQPFs) are investigated for a time-lagged multimodel ensemble forecast system. One of the advantages of such an ensemble forecast system is its low-cost generation of ensemble members. In conjunction with a frequently cycling data assimilation system using a diabatic initialization [such as the Local Analysis and Prediction System (LAPS)], the time-lagged multimodel ensemble system offers a particularly appealing approach for QPF and PQPF applications. Using the NCEP stage IV precipitation analyses for verification, 6-h QPFs and PQPFs from this system are assessed during the period of March–May 2005 over the west-central United States. The ensemble system was initialized by hourly LAPS runs at a horizontal resolution of 12 km using two mesoscale models, including the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Weather Research and Forecast (WRF) model with the Advanced Research WRF (ARW) dynamic core. The 6-h PQPFs from this system provide better performance than the NCEP operational North American Mesoscale (NAM) deterministic runs at 12-km resolution, even though individual members of the MM5 or WRF models perform comparatively worse than the NAM forecasts at higher thresholds and longer lead times. Recalibration was conducted to reduce the intensity errors in time-lagged members. In spite of large biases and spatial displacement errors in the MM5 and WRF forecasts, statistical verification of QPFs and PQPFs shows more skill at longer lead times by adding more members from earlier initialized forecast cycles. Combing the two models only reduced the forecast biases. The results suggest that further studies on time-lagged multimodel ensembles for operational forecasts are needed.

Corresponding author address: Huiling Yuan, NOAA/ESRL, R/GSD7, 325 Broadway, Boulder, CO 80305-3328. Email: huiling.yuan@noaa.gov

Abstract

Short-range quantitative precipitation forecasts (QPFs) and probabilistic QPFs (PQPFs) are investigated for a time-lagged multimodel ensemble forecast system. One of the advantages of such an ensemble forecast system is its low-cost generation of ensemble members. In conjunction with a frequently cycling data assimilation system using a diabatic initialization [such as the Local Analysis and Prediction System (LAPS)], the time-lagged multimodel ensemble system offers a particularly appealing approach for QPF and PQPF applications. Using the NCEP stage IV precipitation analyses for verification, 6-h QPFs and PQPFs from this system are assessed during the period of March–May 2005 over the west-central United States. The ensemble system was initialized by hourly LAPS runs at a horizontal resolution of 12 km using two mesoscale models, including the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Weather Research and Forecast (WRF) model with the Advanced Research WRF (ARW) dynamic core. The 6-h PQPFs from this system provide better performance than the NCEP operational North American Mesoscale (NAM) deterministic runs at 12-km resolution, even though individual members of the MM5 or WRF models perform comparatively worse than the NAM forecasts at higher thresholds and longer lead times. Recalibration was conducted to reduce the intensity errors in time-lagged members. In spite of large biases and spatial displacement errors in the MM5 and WRF forecasts, statistical verification of QPFs and PQPFs shows more skill at longer lead times by adding more members from earlier initialized forecast cycles. Combing the two models only reduced the forecast biases. The results suggest that further studies on time-lagged multimodel ensembles for operational forecasts are needed.

Corresponding author address: Huiling Yuan, NOAA/ESRL, R/GSD7, 325 Broadway, Boulder, CO 80305-3328. Email: huiling.yuan@noaa.gov

Save
  • Albers, S. C., 1995: The LAPS wind analysis. Wea. Forecasting, 10 , 342352.

  • Alhamed, A., Lakshmivarahan S. , and Stensrud D. J. , 2002: Cluster analysis of multimodel ensemble data from SAMEX. Mon. Wea. Rev., 130 , 226256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and Wandishin M. S. , 2002: Determining the resolved spatial scales of Eta model precipitation forecasts. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 3.2. [Available online at http://ams.confex.com/ams/pdfpapers/47735.pdf.].

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and Kain J. S. , 2006: Sensitivity of several performance measures to displacement error, bias, and event frequency. Wea. Forecasting, 21 , 636648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bright, D., and Mullen S. L. , 2002: Short-range ensemble forecasts of precipitation during the southwest monsoon. Wea. Forecasting, 17 , 10801100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., Tracton M. S. , Stensrud D. J. , DiMego G. , and Toth Z. , 1995: Short-range ensemble forecasting: Report from a workshop, 25–27 July 1994. Bull. Amer. Meteor. Soc., 76 , 16171624.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Hollingsworth A. , Lalaurette F. , and Ghelli A. , 1999: Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Wea. Forecasting, 14 , 168189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casati, B., Ross G. , and Stepehenson D. B. , 2004: A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor. Appl., 11 , 141154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalcher, A., Kalnay E. , and Hoffman R. N. , 1988: Medium range lagged average forecasts. Mon. Wea. Rev., 116 , 402416.

  • Du, J., Mullen S. L. , and Sanders F. , 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., McQueen J. , DiMego G. , Toth Z. , Jovic D. , Zhou B. , and Chuang H. , 2006: New dimension of NCEP Short-Range Ensemble Forecasting (SREF) system: Inclusion of WRF members. Preprints, WMO Expert Team Meeting on Ensemble Prediction System, Exeter, United Kingdom, World Meteorological Organization. [Available online at http://wwwt.emc.ncep.noaa.gov/mmb/SREF/WMO06_full.pdf.].

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Grunmann P. , Rogers E. , Gayno G. , and Koren V. , 2003: Implementation of the upgraded Noah land-surface model in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., 1999: Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Wea. Forecasting, 14 , 405426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14 , 155167.

  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129 , 550560.

  • Hamill, T. M., and Colucci S. J. , 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Mullen S. L. , 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87 , 3346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, L. O., Hammond K. R. , Lusk C. M. , and Mross E. F. , 1992: The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120 , 863883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., Mureau R. , Opsteegh J. D. , and Barkmeijer J. , 2000: A short-range to early-medium-range ensemble prediction system for the European area. Mon. Wea. Rev., 128 , 35013519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and Kalnay E. , 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus, 35A , 100118.

  • Janjić, Z., 1994: The step-mountain Eta coordinate model: Further developments of the convection closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jian, G-J., and McGinley J. A. , 2005: Evaluation of a short-range forecast system on quantitative precipitation forecasts associated with tropical cyclones of 2003 near Taiwan. J. Meteor. Soc. Japan, 83 , 657681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jian, G-J., Shieh S-L. , and McGinley J. A. , 2003: Precipitation simulation associated with Typhoon Sinlaku (2002) in Taiwan area using the LAPS diabatic initialization for MM5. Terr., Atmos., Oceanic Sci., 14 , 261288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jollife, I. T., and Stephenson D. B. , 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley and Sons, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102 , 409418.

  • Lewis, J., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133 , 18651885.

  • Lu, C., Yuan H. , Schwartz B. , and Benjamin S. , 2007: Short-range forecast using time-lagged ensembles. Wea. Forecasting, 22 , 580595.

  • Mahoney W. P. III, , and Coauthors, 2005: The Federal Highway Administration’s Maintenance Decision Support System Project: Summary results and recommendations. Transportation Research Record 1911, TRB, National Research Council, Washington, DC, 133–142.

    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mason, S. J., and Graham N. E. , 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128 , 21452166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., 2007: Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Quart. J. Roy. Meteor. Soc., 133 , 14871500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., Buizza R. , Palmer T. N. , and Petroliagis T. , 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and Baumhefner D. P. , 1989: The impact of initial condition uncertainty on numerical simulations of large-scale explosive cyclogenesis. Mon. Wea. Rev., 117 , 28002821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., Molteni F. , Mureau R. , Buizza R. , Chapelet P. , and Tribbia J. , 1993: Ensemble prediction. Proc. ECMWF Seminar on Validation of Models over Europe, Vol. 1, Reading, United Kingdom, ECMWF, 21–66.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127 , 24732489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123 , 33313343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Brooks H. E. , Du J. , Tracton M. S. , and Rogers E. , 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127 , 433446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Bao J. W. , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., Vautard R. , and Strauss B. , 1997: Evaluation of probabilistic prediction systems. Proc. ECMWF Workshop on Predictability, Reading, United Kingdom, ECMWF, 1–25.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Walser, A., Lüthi D. , and Schär C. , 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132 , 560577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysical Series, Vol. 91, Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Wilson, L. J., 2000: Comments on “Probabilistic predictions of precipitation using the ECMWF ensemble prediction system.”. Wea. Forecasting, 15 , 361364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., Mullen S. L. , Gao X. , Sorooshian S. , Du J. , and Juang H. H. , 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/2003 by the RSM ensemble system. Mon. Wea. Rev., 133 , 279294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., Gao X. , Mullen S. L. , Sorooshian S. , Du J. , and Juang H. H. , 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22 , 12871303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., McGinley J. A. , Schultz P. J. , Anderson C. J. , and Lu C. , 2008: Short-range precipitation forecasts from time-lagged multimodel ensembles during the HMT-West-2006 campaign. J. Hydrometeor., 9 , 477491.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 176 12
PDF Downloads 165 47 1