On the Improvement of COAMPS Weather Forecasts Using an Advanced Radiative Transfer Model

Ming Liu Naval Research Laboratory, Monterey, California

Search for other papers by Ming Liu in
Current site
Google Scholar
PubMed
Close
,
Jason E. Nachamkin Naval Research Laboratory, Monterey, California

Search for other papers by Jason E. Nachamkin in
Current site
Google Scholar
PubMed
Close
, and
Douglas L. Westphal Naval Research Laboratory, Monterey, California

Search for other papers by Douglas L. Westphal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Fu–Liou’s delta-four-stream (with a two-stream option) radiative transfer model has been implemented in the U.S. Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to calculate solar and thermal infrared fluxes in 6 shortwave and 12 longwave bands. The model performance is evaluated at high resolution for clear-sky and overcast conditions against the observations from the Southern Great Plains of the Atmospheric Radiation Measurement Program. In both cases, use of the Fu–Liou model provides significant improvement over the operational implementation of the standard Harshvardhan radiation parameterization in both shortwave and longwave fluxes. A sensitivity study of radiative flux on clouds reveals that the choices of cloud effective radius schemes for ice and liquid water are critical to the flux calculation due to the effects on cloud optical properties. The sensitivity study guides the selection of optimal cloud optical properties for use in the Fu–Liou parameterization as implemented in COAMPS. The new model is then used to produce 3-day forecasts over the continental United States for a winter and a summer month. The verifications of parallel runs using the standard and new parameterizations show that Fu–Liou dramatically reduces the model’s systematic warm bias in the upper troposphere in both winter and summer. The resultant cooling modifies the atmospheric stability and moisture transport, resulting in a significant reduction in the upper-tropospheric wet bias. Overall ice and liquid water paths are also reduced. At the surface, Fu–Liou reduces the negative temperature and sea level pressure biases by providing more accurate radiative heating rates to the land surface model. The error reductions increase with forecast length as the impact of improved radiative fluxes accumulates over time. A combination of the two- and four-stream options results in major computational efficiency gains with minimal loss in accuracy.

Corresponding author address: Ming Liu, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Monterey, CA 94943. Email: ming.liu@nrlmry.navy.mil

Abstract

Fu–Liou’s delta-four-stream (with a two-stream option) radiative transfer model has been implemented in the U.S. Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to calculate solar and thermal infrared fluxes in 6 shortwave and 12 longwave bands. The model performance is evaluated at high resolution for clear-sky and overcast conditions against the observations from the Southern Great Plains of the Atmospheric Radiation Measurement Program. In both cases, use of the Fu–Liou model provides significant improvement over the operational implementation of the standard Harshvardhan radiation parameterization in both shortwave and longwave fluxes. A sensitivity study of radiative flux on clouds reveals that the choices of cloud effective radius schemes for ice and liquid water are critical to the flux calculation due to the effects on cloud optical properties. The sensitivity study guides the selection of optimal cloud optical properties for use in the Fu–Liou parameterization as implemented in COAMPS. The new model is then used to produce 3-day forecasts over the continental United States for a winter and a summer month. The verifications of parallel runs using the standard and new parameterizations show that Fu–Liou dramatically reduces the model’s systematic warm bias in the upper troposphere in both winter and summer. The resultant cooling modifies the atmospheric stability and moisture transport, resulting in a significant reduction in the upper-tropospheric wet bias. Overall ice and liquid water paths are also reduced. At the surface, Fu–Liou reduces the negative temperature and sea level pressure biases by providing more accurate radiative heating rates to the land surface model. The error reductions increase with forecast length as the impact of improved radiative fluxes accumulates over time. A combination of the two- and four-stream options results in major computational efficiency gains with minimal loss in accuracy.

Corresponding author address: Ming Liu, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Monterey, CA 94943. Email: ming.liu@nrlmry.navy.mil

Save
  • Black, T. L., 1994: The new NMC mesoscale eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Bower, K. N., Choulartion T. W. , Latham J. , Nelson J. , Baker M. B. , and Jensen J. , 1994: A parameterization of warm clouds for use in atmospheric general circulation models. J. Atmos. Sci., 51 , 27222732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS 3.0 model description-General theory and equations. NRL Tech. Note NRL/PUB/7500-0-3-448, 143 pp.

  • Del Genio, A. D., Yao M-S. , Kovari W. , and Lo K. K-W. , 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and Liou K-N. , 1992: On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and Liou K-N. , 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., Liou K-N. , Cribb M. C. , Charlock T. P. , and Grossman A. , 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54 , 27992812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., Lesins G. , Higgins J. , Charlock T. , Chylek P. , and Michalsky J. , 1998a: Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett., 25 , 11691172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., Yang P. , and Sun W. B. , 1998b: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., Farrara J. , Liou K. N. , and Mechoso C. R. , 2003: Parameterization of cloud–radiation processes in the UCLA general circulation model. J. Climate, 16 , 33573370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Isaac G. A. , 2004: Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc., 130 , 23772390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, Randall D. A. , and Corsetti T. G. , 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , 10091016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, Randall D. A. , Corsetti T. G. , and Dazlich D. A. , 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46 , 19221942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Rosmond T. E. , 1991: The description of the U.S. Navy operational global atmospheric prediction system’s spectral forecast model. Mon. Wea. Rev., 119 , 17861815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y. X., and Stamnes K. , 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6 , 728742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., McFarquhar G. M. , Mitchell D. L. , and Somerville R. C. J. , 2003: The sensitivity of radiative fluxes to parameterization cloud microphysics. J. Climate, 16 , 29792996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Rose F. G. , and Charlock T. P. , 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22 , 146164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and Rose F. G. , 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 48 , 8395.

    • Search Google Scholar
    • Export Citation
  • Lee, W-H., Iacobellis S. F. , and Somerville R. C. J. , 1997: Cloud radiation forcing and feedbacks: Generation circulation model tests and observational validation. J. Climate, 10 , 24792496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K-N., Fu Q. , and Ackerman T. P. , 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45 , 19401948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., Westphal D. L. , Wang S. , Shimizu A. , Sugimoto N. , Zhou J. , and Chen Y. , 2003: A high-resolution numerical study of the Asia dust storms of April 2001. J. Geophys. Res., 108 , 8653. doi:10.1029/2002JD003178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., Westphal D. L. , Walker A. L. , Holt T. R. , Richardson K. A. , and Miller S. D. , 2007: COAMPS real-time dust storm forecasting during Operation Iraqi Freedom. Wea. Forecasting, 22 , 192206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Hallett J. , 1997: The “1/3” power-law between effective radius and liquid water content. Quart. J. Roy. Meteor. Soc., 123 , 17891795.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., Boer G. J. , Blanchet J-P. , and Lazare M. , 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2001: Comments on ‘Parameterization of effective sizes of cirrus-cloud particles and its verification against observations.’. Quart. J. Roy. Meteor. Soc., 127 , 261265.

    • Search Google Scholar
    • Export Citation
  • Min, Q., and Harrison L. C. , 1998: Comparison of model-predicted total shortwave with measurements under overcast cloud conditions. Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ, U.S. Department of Energy, 483–488.

    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., Schmidt J. M. , Mitrescu C. , and Miller S. D. , 2007: Verification of global and mesoscale cloud forecasts over the eastern Pacific. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 8A.5.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., and Liou K-N. , 1995: Ice microphysics and climatic temperature perturbations. Atmos. Res., 35 , 127138.

  • Platt, C. M. R., and Harshvardhan, 1988: Temperature dependence of cirrus extinction: Implications for climate feedback. J. Geophys. Res., 93 , 1105111058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, S. J., Hobbs P. V. , Rangno A. L. , and Hegg D. A. , 1999: Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke. J. Geophys. Res., 104D , 61456153.

    • Search Google Scholar
    • Export Citation
  • Rose, F. G., and Charlock T. P. , 2002: New Fu–Liou code tested with ARM raman lidar aerosols and CERES in pre-CALIPSO sensitivity study. Preprints, 11th Conf. on Atmospheric Radiation, Ogden, UT, Amer. Meteor. Soc., P4.8. [Available online at http://ams.confex.com/ams/pdfpapers/42757.pdf.].

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction model for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, T., Tanaka M. , and Nakajima T. , 1993: The microphysical feedback of cirrus cloud in climate change. J. Meteor. Soc. Japan, 71 , 701713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegen, I., and Lacis A. A. , 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101 , 1923719244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyser, K., 1998: The effective radius in ice clouds. J. Climate, 11 , 17931802.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 51 3
PDF Downloads 105 32 2