Composite Meteorological Forcing of Puerto Rican Springtime Flood Events

Mark R. Jury Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico

Search for other papers by Mark R. Jury in
Current site
Google Scholar
PubMed
Close
and
David M. Sanchez Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico

Search for other papers by David M. Sanchez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The central Antilles Islands experience short periods of heavy rainfall during the spring season (April and May) when trade winds weaken across the Caribbean Sea. Composite analysis of the top 10 flood events in the period 1979–2005 is carried out to understand the meteorological forcing. Cases are selected when mean rainfall over Puerto Rico exceeds 50 mm day−1 and emergency management reports indicate the day is a “declared weather disaster.” In the NCEP–NCAR composite analyses, pulses of moisture shift westward across the tropical Atlantic about 10 days before a flood event. Five days before the composite flood a westerly trough penetrates eastward from the Gulf of Mexico. Northward flow develops over the Caribbean Sea and a southwest-oriented cloud band extends from Colombia toward Puerto Rico. A key feature of the midtropospheric circulation field is the development of anomalous twin rotors east of Florida in the mid- to upper troposphere. The flood events coincide with a change in zonal wind shear from westerly to easterly that is brought about by slow tropical and fast subtropical wave systems.

Corresponding author address: Mark R. Jury, Dept. of Physics, University of Puerto Rico, Mayaguez, Puerto Rico 00681. Email: jury@uprm.edu

Abstract

The central Antilles Islands experience short periods of heavy rainfall during the spring season (April and May) when trade winds weaken across the Caribbean Sea. Composite analysis of the top 10 flood events in the period 1979–2005 is carried out to understand the meteorological forcing. Cases are selected when mean rainfall over Puerto Rico exceeds 50 mm day−1 and emergency management reports indicate the day is a “declared weather disaster.” In the NCEP–NCAR composite analyses, pulses of moisture shift westward across the tropical Atlantic about 10 days before a flood event. Five days before the composite flood a westerly trough penetrates eastward from the Gulf of Mexico. Northward flow develops over the Caribbean Sea and a southwest-oriented cloud band extends from Colombia toward Puerto Rico. A key feature of the midtropospheric circulation field is the development of anomalous twin rotors east of Florida in the mid- to upper troposphere. The flood events coincide with a change in zonal wind shear from westerly to easterly that is brought about by slow tropical and fast subtropical wave systems.

Corresponding author address: Mark R. Jury, Dept. of Physics, University of Puerto Rico, Mayaguez, Puerto Rico 00681. Email: jury@uprm.edu

Save
  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Topic. Meteor. Oceanogr., 5 (2) 113.

  • Amador, J. A., Magaña V. O. , and Pérez J. B. , 2000: The low level jet and convective activity in the Caribbean. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 114–115.

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and Arrit R. W. , 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126 , 578599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and Arrit R. W. , 2001: Representation of summertime low-level jets in the central United States by the NCEP–NCAR reanalysis. J. Climate, 14 , 234247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala-Carcedo, R., 2002: Flood warnings and the social responsibility of experts: Analysis of a Spanish case. Bull. Assoc. Geogr. Esp., 33 , 7992.

    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and Hoskins B. J. , 1979: Conditional symmetric instability—Possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105 , 945962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, M. M., and Elsner J. B. , 1997: A statistical method for forecasting rainfall over Puerto Rico. Wea. Forecasting, 9 , 265278.

  • Chen, A. A., and Taylor M. , 2002: Investigating the link between early season Caribbean rainfall and the El Niño. Int. J. Climatol., 22 , 87106.

  • Davis, C. A., and Bosart L. F. , 2004: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85 , 16571662.

  • Doswell C. A. III, , Ramis C. , Romero R. , and Alonso S. , 1998: A diagnostic study of three heavy precipitation episodes in the western Mediterranean region. Wea. Forecasting, 13 , 102124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36 , 24252449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983: The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci., 40 , 23682374.

  • Enfield, D. B., and Coauthors, 2008: IASCLIP science plan. AOML Report to CLIVAR, 66 pp.

  • Giannini, A., Kushnir Y. , and Cane M. A. , 2001: Seasonality in the impact of ENSO and the North Atlantic high on Caribbean rainfall. Phys. Chem. Earth, 28 , 143147.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and Zhang C. , 2002: Cloud components of the ITCZ. J. Geophys. Res., 107 , 4565. doi:10.1029/2002JD002089.

  • Jorgensen, D. P., Pu Z. , Persson P. O. G. , and Tao W-K. , 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131 , 27052729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Keyser, D. A., and Shapiro M. A. , 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114 , 452499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., Kaplan M. L. , and Lin Y-L. , 2006: The impact of superimposed low-level jets during the 2003 Presidents’ Day winter storm. Preprints, 32nd Conf. on Radar Meteorology/11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., 3.M6. [Available online at http://ams.confex.com/ams/pdfpapers/95404.pdf.].

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and Yablonsky R. M. , 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61 , 16741692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., 2004: Cases of heavy precipitation and flash floods in the Caribbean during El Niño winters. J. Hydrometeor., 5 , 577594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Marengo J. A. , 2001: The seasonality and interannual variability of rainfall in the Brazilian Amazon basin. J. Climate, 14 , 43084318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., Amador J. , and Medina S. , 1999: The midsummer drought over Mexico and Central America. J. Climate, 12 , 15771588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D., and Murgida A. , 2004: Cultural vulnerability and scenarios of risks by floods. GEOUSP Wea., 16 , 181192.

  • Miller, T. L., 1985: On the energetics and nonhydrostatic aspects of symmetric baroclinic instability. J. Atmos. Sci., 42 , 203211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, E., Busalacchi A. J. , Nigam S. , and Ruiz-Barradas A. , 2008: Winter and summer structure of the Caribbean low-level jet. J. Climate, 21 , 12601276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2002: Recent changes in climate extremes in the Caribbean region. J. Geophys. Res., 107 , 4601. doi:10.1029/2002JD002251.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9 , 16981711.

  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4 , 707722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87 , 6377.

  • Xu, Q., 1986: Conditional symmetric instability and mesoscale rainbands. Quart. J. Roy. Meteor. Soc., 112 , 315334.

  • Xu, Q., and Zhou X. P. , 1982: Baroclinic and inertial instability in an nonhydrostatic atmosphere. Sci. Atmos. Sin., 6 , 355367.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 76 5
PDF Downloads 60 17 4