Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI

Suzana J. Camargo International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
and
Anthony G. Barnston International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Anthony G. Barnston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The International Research Institute for Climate and Society (IRI) has been issuing experimental seasonal tropical cyclone activity forecasts for several ocean basins since early 2003. In this paper the method used to obtain these forecasts is described and the forecast performance is evaluated. The forecasts are based on tropical cyclone–like features detected and tracked in a low-resolution climate model, namely ECHAM4.5. The simulation skill of the model using historical observed sea surface temperatures (SSTs) over several decades, as well as with SST anomalies persisted from the previous month’s observations, is discussed. These simulation skills are compared with skills of purely statistically based hindcasts using as predictors recently observed SSTs. For the recent 6-yr period during which real-time forecasts have been made, the skill of the raw model output is compared with that of the subjectively modified probabilistic forecasts actually issued.

Despite variations from one basin to another, the levels of hindcast skill for the dynamical and statistical forecast approaches are found, overall, to be approximately equivalent at fairly modest but statistically significant levels. The dynamical forecasts require statistical postprossessing (calibration) to be competitive with, and in some circumstances superior to, the statistical models. Skill levels decrease only slowly with increasing lead time up to 2–3 months. During the recent period of real-time forecasts, the issued forecasts have had higher probabilistic skill than the raw model output, due to the forecasters’ subjective elimination of the “overconfidence” bias in the model’s forecasts. Prospects for the future improvement of dynamical tropical cyclone prediction are considered.

Corresponding author address: Suzana Camargo, Lamont-Doherty Earth Observatory, The Earth Institute at Columbia University, 61 Rte. 9W, P.O. Box 1000, Palisades, NY 10964-8000. Email: suzana@ldeo.columbia.edu

Abstract

The International Research Institute for Climate and Society (IRI) has been issuing experimental seasonal tropical cyclone activity forecasts for several ocean basins since early 2003. In this paper the method used to obtain these forecasts is described and the forecast performance is evaluated. The forecasts are based on tropical cyclone–like features detected and tracked in a low-resolution climate model, namely ECHAM4.5. The simulation skill of the model using historical observed sea surface temperatures (SSTs) over several decades, as well as with SST anomalies persisted from the previous month’s observations, is discussed. These simulation skills are compared with skills of purely statistically based hindcasts using as predictors recently observed SSTs. For the recent 6-yr period during which real-time forecasts have been made, the skill of the raw model output is compared with that of the subjectively modified probabilistic forecasts actually issued.

Despite variations from one basin to another, the levels of hindcast skill for the dynamical and statistical forecast approaches are found, overall, to be approximately equivalent at fairly modest but statistically significant levels. The dynamical forecasts require statistical postprossessing (calibration) to be competitive with, and in some circumstances superior to, the statistical models. Skill levels decrease only slowly with increasing lead time up to 2–3 months. During the recent period of real-time forecasts, the issued forecasts have had higher probabilistic skill than the raw model output, due to the forecasters’ subjective elimination of the “overconfidence” bias in the model’s forecasts. Prospects for the future improvement of dynamical tropical cyclone prediction are considered.

Corresponding author address: Suzana Camargo, Lamont-Doherty Earth Observatory, The Earth Institute at Columbia University, 61 Rte. 9W, P.O. Box 1000, Palisades, NY 10964-8000. Email: suzana@ldeo.columbia.edu

Save
  • Aldrich, J., 1997: R. A. Fisher and the making of maximum likelihood 1912–1922. Stat. Sci., 12 , 162176.

  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9 , 15181530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., 1992: Correspondence among the correlation, RMSE, and Heidke forecast verification measures—Refinement of the Heidke score. Wea. Forecasting, 7 , 699709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Livezey R. E. , 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and van den Dool H. M. , 1993: A degeneracy in cross-validated skill in regression-based forecasts. J. Climate, 6 , 963977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., Chelliah M. , and Goldenberg S. B. , 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35 , 367383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., Mason S. J. , Goddard L. , DeWitt D. G. , and Zebiak S. , 2003: Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84 , 17831796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., Kumar A. , Goddard L. , and Hoerling M. P. , 2005: Improving seasonal prediction practices through attribution of climate variability. Bull. Amer. Meteor. Soc., 86 , 5972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81 (6) S1S50.

  • Bengtsson, L., 2001: Hurricane threats. Science, 293 , 440441.

  • Bengtsson, L., Böttger H. , and Kanamitsu M. , 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34 , 440457.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Schlese U. , Roeckner E. , Latif M. , Barnett T. P. , and Graham N. E. , 1993: A two-tiered approach to long-range climate forecasting. Science, 261 , 10261029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Botzet M. , and Esch M. , 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A , 175196.

  • Bengtsson, L., Botzet M. , and Esch M. , 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A , 5773.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Hodges K. I. , and Esch M. , 2007a: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analysis. Tellus, 59A , 396416.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Hodges K. I. , Esch M. , Keenlyside N. , Kornblueh L. , Luo J-J. , and Yamagata T. , 2007b: How may tropical cyclones change in a warmer climate? Tellus, 59A , 539561.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and Manabe S. , 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17 , 19171920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. J., Leslie L. M. , and Speer M. S. , 2003: The impact of observational technology on climate database quality: Tropical cyclones in the Tasman Sea. J. Climate, 16 , 26402645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and Zebiak S. E. , 2002: Improving the detection and tracking of tropical storms in atmospheric general circulation models. Wea. Forecasting, 17 , 11521162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and Sobel A. H. , 2004: Formation of tropical storms in an atmospheric general circulation model. Tellus, 56A , 5667.

  • Camargo, S. J., and Barnston A. G. , 2008: Description and skill evaluation of experimental dynamical seasonal forecasts of tropical cyclone activity at IRI. International Research Institute for Climate and Society Tech. Rep. 08-02, Columbia University, Palisades, NY, 35 pp. [Available online at http://portal.iri.columbia.edu.].

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., Barnston A. G. , and Zebiak S. E. , 2005: A statistical assessment of tropical cyclones in atmospheric general circulation models. Tellus, 57A , 589604.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., Barnston A. G. , Klotzbach P. J. , and Landsea C. W. , 2007a: Seasonal tropical cyclone forecasts. WMO Bull., 56 , 297309.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., Li H. , and Sun L. , 2007b: Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP Regional Spectral Model. Int. J. Climatol., 27 , 311325. doi:10.1002/joc.1400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., Sobel A. H. , Barnston A. G. , and Emanuel K. A. , 2007c: Tropical cyclone genesis potential index in climate models. Tellus, 59A , 428443.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., Shi J. E. , and Lam C. M. , 1998: Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecasting, 13 , 9971004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., Shi J. E. , and Liu K. S. , 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting, 16 , 491498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., Cane M. A. , Kaplan A. , Zebiak S. E. , and Huang D. , 2004: Predictability of El Niño over the past 148 years. Nature, 428 , 733735.

  • Chu, J-H., Sampson C. R. , Levine A. S. , and Fukada E. , cited. 2002: The Joint Typhoon Warning tropical cyclone best-tracks, 1945–2000. Naval Research Laboratory, NRL/MR/7540-02-16. [Available online http://metocph.nmci.navy.mil/jtwc/best_tracks/TC_bt_report.html.].

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8 , 985987.

  • Goddard, L., Barnston A. G. , and Mason S. J. , 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84 , 17611781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and Shapiro L. J. , 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., Landsea C. W. , Mestas-Nuñez A. M. , and Gray W. M. , 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., Landsea C. W. , Mielke P. W. Jr., and Berry K. J. , 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8 , 7386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harper, B. A., Stroud S. A. , McCormack M. , and West S. , 2008: A review of historical tropical cyclone intensity in northwestern Australia and implications for climate change and trend analysis. Aust. Meteor. Mag., 57 , 121141.

    • Search Google Scholar
    • Export Citation
  • Hsu, W-R., and Murphy A. H. , 1986: The attributes diagram: A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecast., 2 , 285293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, M., Behringer D. W. , and Leetmaa A. , 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev., 126 , 10221034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and Zwiers F. W. , 2002: Climate predictions with multimodel ensembles. J. Climate, 15 , 793799.

  • Klotzbach, P. J., 2007a: Recent developments in statistical prediction of seasonal Atlantic basin tropical cyclone activity. Tellus, 59A , 511518.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., Sirutis J. J. , Garner S. T. , and Held R. E. T. I. M. , 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88 , 15491565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landman, W. A., Seth A. , and Camargo S. J. , 2005: The effect of regional climate model domain choice on the simulation of tropical cyclone–like vortices in the southwestern Indian Ocean. J. Climate, 18 , 12631274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., Harper B. A. , Horau K. , and Knaff J. A. , 2006: Can we detect trends in extreme tropical cyclones? Science, 313 , 452454.

  • Manabe, S., Holloway J. L. , and Stone H. M. , 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27 , 580613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mason, S. J., 2004: On using climatology as a reference strategy in the Brier and ranked probability skill scores. Mon. Wea. Rev., 132 , 18911895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., Goddard L. , Graham N. E. , Yulaeva E. , Sun L. Q. , and Arkin P. A. , 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80 , 18531873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuura, T., Yumoto M. , and Iizuka S. , 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21 , 105117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, B. F., and Landsea C. W. , 2003: Assessing the skill of operational Atlantic seasonal tropical cyclone forecasts. Wea. Forecasting, 18 , 4554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P. T., Kumar A. , Barnston A. G. , and Goddard L. , 2000: Simulation skills of the SST-forced global climate variability of the NCEP-MRF9 and the Scripps-MPI ECHAM3 models. J. Climate, 13 , 36573679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., Lall U. , and Zebiak S. E. , 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130 , 17921811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Repelli, C. A., and Nobre P. , 2004: Statistical prediction of sea-surface temperature over the tropical Atlantic. Int. J. Climatol., 24 , 4555.

  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., Lall U. , Zebiak S. E. , and Goddard L. , 2004: Optimal combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132 , 27322744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Tech. Rep. 218, Hamburg, Germany, 90 pp.

    • Search Google Scholar
    • Export Citation
  • Royer, J-F., Chauvin F. , Timbal B. , Araspin P. , and Grimal D. , 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38 , 307343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., Watterson I. G. , and Evans J. L. , 1992: Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climate. Geophys. Res. Lett., 19 , 18311834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Saunders, M. A., and Lea A. S. , 2004: Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434 , 10051008. doi:10.1038/nature03454.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and Pytharoulis I. , 2001: A dynamical approach to seasonal prediction of Atlantic tropical cyclone activity. Wea. Forecasting, 16 , 725734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., Barnston A. G. , and Robertson A. W. , 2007: Estimation of seasonal precipitation tercile-based categorical probabilities from ensembles. J. Climate, 20 , 22102228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B., 2008: An enhanced tropical cyclone data set for the Australian region. Preprints, 20th Conf. on Climate Variability and Change/Tropical Meteorology Special Symposium, New Orleans, LA, Amer. Meteor. Soc., JP3.1. [Available online at http://ams.confex.com/ams/pdfpapers/128054.pdf.].

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A , 314324.

  • van den Dool, H. M., 2007: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 215 pp.

  • Vimont, J. P., and Kossin J. P. , 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34 , L07709. doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132 , 647666. doi:10.1256/qj.05.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Anderson J. L. , 2001: Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations. J. Climate, 14 , 533545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Stockdale T. N. , 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129 , 25212537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., Anderson J. L. , and Stern W. F. , 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10 , 745760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., Anderson J. L. , and Stern W. F. , 1999: Impact of large-scale circulation on tropical storm frequency, intensity and location, simulated by an ensemble of GCM integrations. J. Climate, 12 , 32373254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., Anderson D. , and Stockdale T. , 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16 , 39323945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34 , L16815. doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Ryan B. F. , 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13 , 30293036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., Nguyen K. C. , and McGregor J. L. , 2004: Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dyn., 22 , 4756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 59, Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Lau N. C. , 1992: A GCM simulation of the relationship between tropical storm formation and ENSO. Mon. Wea. Rev., 120 , 958977.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 117 6
PDF Downloads 245 104 4