Objective Estimation of the 24-h Probability of Tropical Cyclone Formation

Andrea B. Schumacher Cooperative Institute for Research in the Atmosphere–Colorado State University, Fort Collins, Colorado

Search for other papers by Andrea B. Schumacher in
Current site
Google Scholar
PubMed
Close
,
Mark DeMaria NOAA/NESDIS/Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by Mark DeMaria in
Current site
Google Scholar
PubMed
Close
, and
John A. Knaff NOAA/NESDIS/Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by John A. Knaff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new product for estimating the 24-h probability of TC formation in individual 5° × 5° subregions of the North Atlantic, eastern North Pacific, and western North Pacific tropical basins is developed. This product uses environmental and convective parameters computed from best-track tropical cyclone (TC) positions, National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) analysis fields, and water vapor (∼6.7 μm wavelength) imagery from multiple geostationary satellite platforms. The parameters are used in a two-step algorithm applied to the developmental dataset. First, a screening step removes all data points with environmental conditions highly unfavorable to TC formation. Then, a linear discriminant analysis (LDA) is applied to the screened dataset. A probabilistic prediction scheme for TC formation is developed from the results of the LDA.

Coefficients computed by the LDA show that the largest contributors to TC formation probability are climatology, 850-hPa circulation, and distance to an existing TC. The product was evaluated by its Brier and relative operating characteristic skill scores and reliability diagrams. These measures show that the algorithm-generated probabilistic forecasts are skillful with respect to climatology, and that there is relatively good agreement between forecast probabilities and observed frequencies. As such, this prediction scheme has been implemented as an operational product called the National Environmental Satellite, Data, and Information Services (NESDIS) Tropical Cyclone Formation Probability (TCFP) product. The TCFP product updates every 6 h and displays plots of TC formation probability and input parameter values on its Web site. At present, the TCFP provides real-time, objective TC formation guidance used by tropical cyclone forecast offices in the Atlantic, eastern Pacific, and western Pacific basins.

Corresponding author address: Andrea Schumacher, CIRA–Colorado State University, Foothills Campus Delivery 1375, Fort Collins, CO 80523-1375. Email: schumacher@cira.colostate.edu

Abstract

A new product for estimating the 24-h probability of TC formation in individual 5° × 5° subregions of the North Atlantic, eastern North Pacific, and western North Pacific tropical basins is developed. This product uses environmental and convective parameters computed from best-track tropical cyclone (TC) positions, National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) analysis fields, and water vapor (∼6.7 μm wavelength) imagery from multiple geostationary satellite platforms. The parameters are used in a two-step algorithm applied to the developmental dataset. First, a screening step removes all data points with environmental conditions highly unfavorable to TC formation. Then, a linear discriminant analysis (LDA) is applied to the screened dataset. A probabilistic prediction scheme for TC formation is developed from the results of the LDA.

Coefficients computed by the LDA show that the largest contributors to TC formation probability are climatology, 850-hPa circulation, and distance to an existing TC. The product was evaluated by its Brier and relative operating characteristic skill scores and reliability diagrams. These measures show that the algorithm-generated probabilistic forecasts are skillful with respect to climatology, and that there is relatively good agreement between forecast probabilities and observed frequencies. As such, this prediction scheme has been implemented as an operational product called the National Environmental Satellite, Data, and Information Services (NESDIS) Tropical Cyclone Formation Probability (TCFP) product. The TCFP product updates every 6 h and displays plots of TC formation probability and input parameter values on its Web site. At present, the TCFP provides real-time, objective TC formation guidance used by tropical cyclone forecast offices in the Atlantic, eastern Pacific, and western Pacific basins.

Corresponding author address: Andrea Schumacher, CIRA–Colorado State University, Foothills Campus Delivery 1375, Fort Collins, CO 80523-1375. Email: schumacher@cira.colostate.edu

Save
  • Beven, J. L., 1999: The boguscane–A serious problem with the NCEP Medium-Range Forecast model in the Tropics. Preprints, 23rd Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 845–848.

  • Bister, M., and Emanuel K. A. , 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125 , 26622682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and Bosart L. F. , 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128 , 353376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegel, L. M., and Frank W. M. , 1997: Large-scale forcing of tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125 , 13971413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., Snyder C. , and Didlake A. C. Jr., 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136 , 24612477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, J., Knaff A. , and Connell B. H. , 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16 , 219233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvements in the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., Frank W. M. , Holland G. J. , Jarrell J. D. , and Southern R. L. , 1987: A Global View of Tropical Cyclones. University of Chicago Press, 185 pp.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and Nolan D. S. , 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • Frank, N. L., and Clark G. , 1980: Atlantic tropical systems of 1979. Mon. Wea. Rev., 108 , 966972.

  • Frank, W. M., and Roundy P. E. , 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134 , 23972417.

  • Gentry, R. C., Fujita T. T. , and Sheets R. C. , 1970: Aircraft, spacecraft, satellite and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9 , 837850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis in the western North Pacific. Tech. Paper 16-75, Dept. of Atmospheric Sciences, Colorado State University, 66 pp. [Available from Dept. of Atmospheric Sciences, Colorado State University, Fort Collins, CO 80523.].

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., cited. 2007: Joint hurricane testbed: Final report—Objective and automated assessment of operational global forecast predictions of tropical cyclone formation and life cycle. [Available online at http://www.nhc.noaa.gov/jht/final_rep/ENharr_JHTfinalreport_03-05.pdf].

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and Montgomery M. T. , 2006: Rapid scan views of convectively generated mesovortices in sheared Tropical Cyclone Gustav (2002). Wea. Forecasting, 21 , 10411050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., Montgomery M. T. , and Davis C. A. , 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennon, C. C., and Hobgood J. S. , 2003: Forecasting tropical cyclogenesis over the Atlantic basin using large-scale data. Mon. Wea. Rev., 131 , 29272940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Knaff, J. A., Cram T. A. , Schumacher A. B. , Kossin J. P. , and DeMaria M. , 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23 , 1728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24 , 182186.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp.

  • Malkus, J. S., and Riehl H. , 1960: On the dynamics and energy transformation in steady-state hurricanes. Tellus, 12 , 120.

  • Maloney, E. D., and Hartmann D. L. , 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58 , 25452558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and Graham N. E. , 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14 , 713725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., WMO/TD 693, Rep. TCP-38, World Meteorological Organization, 63–105.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and Zehr R. M. , 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38 , 11321151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Vollaro D. , 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128 , 32963307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., Vollaro D. , Skubis S. , and Dickinson M. , 2000: Origins and mechanisms of eastern Pacific tropical cyclogenesis: A case study. Mon. Wea. Rev., 128 , 125139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., Vollaro D. , and Corbosiero K. L. , 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61 , 24932509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., Lombardo K. , and Vollaro D. , 2007: Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci., 64 , 13011317.

  • Montgomery, M. T., Nicholls M. E. , Cram T. A. , and Saunders A. B. , 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moody, J. L., Wimmers A. J. , and Davenport J. C. , 1999: Remotely sensed specific humidity: Development of a derived product from the GOES Imager channel 3. Geophys. Res. Lett., 26 , 5962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12 , 595600.

  • Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47 , 25802593.

  • Palmén, E. H., 1948: On the formation and structure of tropical cyclones. Geophysics, 3 , 2638.

  • Pasch, R. J., Harr P. A. , Avila L. A. , Jiing J-G. , and Eliott G. , 2006: An evaluation and comparison of predictions of tropical cyclone cyclogenesis by three global forecast models. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 14B.5. [Available online at http://ams.confex.com/ams/pdfpapers/108725.pdf.].

  • Perrone, T. J., and Lowe P. R. , 1986: A statistically derived prediction procedure for tropical storm formation. Mon. Wea. Rev., 114 , 165177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948: On the formation of typhoons. J. Meteor., 5 , 247264.

  • Ruprecht, E., and Gray W. M. , 1974: Analysis of satellite-observed tropical cloud clusters. Tech. Paper 219, Dept. of Atmospheric Sciences, Colorado State University, 91 pp. [Available from Dept. of Atmospheric Sciences, Colorado State University, Fort Collins, CO 80523.].

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and Schrader A. J. , 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81 , 12311240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and Goldenberg S. B. , 1998: Atlantic sea surface temperatures and tropical cyclone formation. J. Climate, 11 , 578590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., Halverson J. B. , Ferrier B. S. , Petersen W. A. , Simpson R. H. , Blakeslee R. , and Durden S. L. , 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67 , 1535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D., 2004: Skill measures for forecasts of extreme rare events. Abstracts, Climate Extremes and Risk Reduction Conference, London, United Kingdom, Lighthill Institute of Mathematical Science, London, England. [Available online at http://www.ucl.ac.uk/lims/events/LIMSConf30Nov04.htm.].

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 467 pp.

  • Zehr, R. M., 1992: Tropical cyclogenesis in the western north Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp. [Available from NOAA/National Environmental Satellite, Data, and Information Service, Washington, DC 20233.].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 540 94 18
PDF Downloads 420 78 12