Estimating Maximum Surface Winds from Hurricane Reconnaissance Measurements

Mark D. Powell NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Mark D. Powell in
Current site
Google Scholar
PubMed
Close
,
Eric W. Uhlhorn NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Eric W. Uhlhorn in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey D. Kepert Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Jeffrey D. Kepert in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Radial profiles of surface winds measured by the Stepped Frequency Microwave Radiometer (SFMR) are compared to radial profiles of flight-level winds to determine the slant ratio of the maximum surface wind speed to the maximum flight-level wind speed, for flight altitude ranges of 2–4 km. The radius of maximum surface wind is found on average to be 0.875 of the radius of the maximum flight-level wind, and very few cases have a surface wind maximum at greater radius than the flight-level maximum. The mean slant reduction factor is 0.84 with a standard deviation of 0.09 and varies with storm-relative azimuth from a maximum of 0.89 on the left side of the storm to a minimum of 0.79 on the right side. Larger slant reduction factors are found in small storms with large values of inertial stability and small values of relative angular momentum at the flight-level radius of maximum wind, which is consistent with Kepert’s recent boundary layer theories. The global positioning system (GPS) dropwindsonde-based reduction factors that are assessed using this new dataset have a high bias and substantially larger RMS errors than the new technique. A new regression model for the slant reduction factor based upon SFMR data is presented, and used to make retrospective estimates of maximum surface wind speeds for significant Atlantic basin storms, including Hurricanes Allen (1980), Gilbert (1988), Hugo (1989), Andrew (1992), and Mitch (1998).

Corresponding author address: Dr. Mark Powell, FSU-COAPS, 2035 E. Paul Dirac Dr., 200 RM Johnson Bldg., Tallahassee, FL 32306-2840. Email: mark.powell@noaa.gov

A comment reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/full/10.1175/WAF-D-10-05001.1 and http://journals.ametsoc.org/doi/full/10.1175/WAF-D-10-05054.1

Abstract

Radial profiles of surface winds measured by the Stepped Frequency Microwave Radiometer (SFMR) are compared to radial profiles of flight-level winds to determine the slant ratio of the maximum surface wind speed to the maximum flight-level wind speed, for flight altitude ranges of 2–4 km. The radius of maximum surface wind is found on average to be 0.875 of the radius of the maximum flight-level wind, and very few cases have a surface wind maximum at greater radius than the flight-level maximum. The mean slant reduction factor is 0.84 with a standard deviation of 0.09 and varies with storm-relative azimuth from a maximum of 0.89 on the left side of the storm to a minimum of 0.79 on the right side. Larger slant reduction factors are found in small storms with large values of inertial stability and small values of relative angular momentum at the flight-level radius of maximum wind, which is consistent with Kepert’s recent boundary layer theories. The global positioning system (GPS) dropwindsonde-based reduction factors that are assessed using this new dataset have a high bias and substantially larger RMS errors than the new technique. A new regression model for the slant reduction factor based upon SFMR data is presented, and used to make retrospective estimates of maximum surface wind speeds for significant Atlantic basin storms, including Hurricanes Allen (1980), Gilbert (1988), Hugo (1989), Andrew (1992), and Mitch (1998).

Corresponding author address: Dr. Mark Powell, FSU-COAPS, 2035 E. Paul Dirac Dr., 200 RM Johnson Bldg., Tallahassee, FL 32306-2840. Email: mark.powell@noaa.gov

A comment reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/full/10.1175/WAF-D-10-05001.1 and http://journals.ametsoc.org/doi/full/10.1175/WAF-D-10-05054.1

Save
  • Dunion, J. P., Landsea C. W. , Houston S. H. , and Powell M. D. , 2003: A reanalysis of the surface winds for Hurricane Donna of 1960. Mon. Wea. Rev., 131 , 19922011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49 , 784789.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and Ritchie E. A. , 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2001: Guidance for reduction of flight-level observations and interpretation of GPS dropwindsonde data. NHC Internal Document. [Available from National Hurricane Center, 11691 SW 17th St., Miami, FL 33166-2149].

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., Black M. L. , and Valde K. , 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18 , 3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1935: The height of tropical cyclones and the “eye” of the storm. Mon. Wea. Rev., 63 , 4549.

  • Hock, T. R., and Franklin J. L. , 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Houze R. A. Jr., , and Coauthors, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87 , 15031521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., Neumann C. J. , and Davis M. A. S. , 1988: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NWS Tech. Memo NWS NHC 22, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58 , 24692484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63 , 21692193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63 , 21942211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Wang Y. , 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58 , 24852501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khelif, D., Burns S. P. , and Friehe C. A. , 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol., 16 , 860875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., Franklin J. L. , McAdie C. J. , Beven J. L. II, Gross J. M. , Jarvinen B. R. , Dunion J. P. , and Dodge P. , 2004: A reanalysis of Hurricane Andrew’s (1992) intensity. Bull. Amer. Meteor. Soc., 85 , 16991712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Bell M. M. , Aberson S. D. , and Black M. L. , 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I. Bull. Amer. Meteor. Soc., 87 , 13351347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OFCM, 2007: National Hurricane Operations Plan. FCM-P12-2007, Office of the Federal Coordinator for Meteorological Services and Supporting Research, Washington, DC, 193 pp. [Available online at www.ofcm.gov/nhop/07/pdf/entire-nhop07.pdf].

    • Search Google Scholar
    • Export Citation
  • Olander, T., and Velden C. , 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22 , 287298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1980: Evaluations of diagnostic marine boundary-layer models applied to hurricanes. Mon. Wea. Rev., 108 , 757766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Black P. G. , 1990: The relationship of hurricane reconnaissance flight-level wind measurements to winds measured by NOAA’s oceanic platforms. J.Wind Eng. Indust. Aerodyn., 36 , 381392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Houston S. H. , 1996: Hurricane Andrew’s landfall in south Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11 , 329349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Houston S. H. , Amat L. R. , and Morisseau-Leroy N. , 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Indust. Aerodyn., 77/78 , 5364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Reinhold T. A. , and Marshall R. D. , 1999: GPS sonde insights on boundary layer wind structure in hurricanes. Wind Engineering into the 21st Century, A. Larsen, G. L. Larose, and F. M. Livesey, Eds., Taylor and Francis, 307–314.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Vickery P. J. , and Reinhold T. A. , 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 , 279283.

  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment (IFEX): A NOAA multi-year field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87 , 15231537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendike, J., 2005: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Diplomarbeit in Meteorology, Freie Universitat, Berlin, Germany, 255 pp.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and Kepert J. A. , 2008: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136 , 31683192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40 , 19841998.

  • Shaw, N., 1922: The birth and death of cyclones. Geophys. Mem., 2 , 213227.

  • Uhlhorn, E. W., and Black P. G. , 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20 , 99116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., Black P. G. , Franklin J. L. , Goodberlet M. , Carswell J. , and Goldstein A. S. , 2007: Hurricane surface wind measurements from an operational Stepped Frequency Microwave Radiometer. Mon. Wea. Rev., 135 , 30703085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., and Coauthors, 2002: Hurricane directional wave spectrum spatial variation at landfall. J. Phys. Oceanogr., 32 , 16671684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and Chelmow M. B. , 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., Clos J. A. , and Shoreibah M. G. , 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., Darling R. W. R. , and Rahn M. E. , 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134 , 11021120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31 , 24722488.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1641 488 142
PDF Downloads 1187 201 5