A Probabilistic Multimodel Ensemble Approach to Seasonal Prediction

Young-Mi Min APEC Climate Center, Busan, South Korea

Search for other papers by Young-Mi Min in
Current site
Google Scholar
PubMed
Close
,
Vladimir N. Kryjov APEC Climate Center, Busan, South Korea

Search for other papers by Vladimir N. Kryjov in
Current site
Google Scholar
PubMed
Close
, and
Chung-Kyu Park APEC Climate Center, Busan, South Korea

Search for other papers by Chung-Kyu Park in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities.

It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided.

PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.

Corresponding author address: Young-Mi Min, APEC Climate Center, National Corporation Busan Bldg. 12F, Yeonsan 2-dong, Yeonje-gu, Busan 611-705, South Korea. Email: ymmin@apcc21.net

Abstract

A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities.

It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided.

PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.

Corresponding author address: Young-Mi Min, APEC Climate Center, National Corporation Busan Bldg. 12F, Yeonsan 2-dong, Yeonje-gu, Busan 611-705, South Korea. Email: ymmin@apcc21.net

Save
  • Atger, F., 2003: Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Mon. Wea. Rev., 131 , 15091523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atger, F., 2004: Estimation of the reliability of ensemble based probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 130 , 627646.

  • Barnston, A. G., Mason S. , Goddard L. , DeWitt D. G. , and Zebiak S. E. , 2003: Increased automation and use of multimodel ensembling in seasonal climate forecasting at the IRI. Bull. Amer. Meteor. Soc., 84 , 17831796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2005: An evolving seasonal forecasting system using Bayes’ theorem. Atmos.–Ocean, 43 , 129143.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78 , 13.

  • Derome, J., and Coauthors, 2001: Seasonal predictions based on two dynamic models. Atmos.–Ocean, 39 , 485501.

  • Doblas-Reyes, F. J., Déqué M. , and Piedeliérem J-P. , 2000: Multi-model spread and probabilistic seasonal forecasts in PROVOST. Quart. J. Roy. Meteor. Soc., 126 , 20692088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., Hagedorn R. , and Palmer T. N. , 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting —II. Calibration and combination. Tellus, 57A , 234252.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Hilliker J. , Ross J. , and Vislocky R. L. , 2000: Model consensus. Wea. Forecasting, 15 , 571582.

  • Hagedorn, R., Doblas-Reyes F. J. , and Palmer T. N. , 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A , 219233.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and Stephenson D. B. , 2003: Forecast Verification. John Wiley and Sons, 240 pp.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S. K. , Hnilo J. J. , Fkorino M. , and Potter G. , 2002: NCEP–DOC AMIP-II reanalysis. Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and Zwiers F. W. , 2001: Skill as function of time scale in ensemble of seasonal hindcast. Climate Dyn., 17 , 127141.

  • Kharin, V. V., and Zwiers F. W. , 2002: Climate predictions with multimodel ensembles. J. Climate, 15 , 793799.

  • Kharin, V. V., and Zwiers F. W. , 2003: Improved seasonal probability forecast. J. Climate, 16 , 16841701.

  • Krzysztofowicz, R., 1983: Why should a forecaster and a decision maker use Bayes theorem. Water Resour. Res., 19 , 327336.

  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12 , 10661069.

  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mason, S. J., and Graham N. E. , 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14 , 713725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., Goddard L. , Graham N. E. , Yulaeva E. , Sun L. , and Arkin P. A. , 1999: The IRI Seasonal Climate Prediction System and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80 , 18531873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12 , 595600.

  • Murphy, A. H., 1977: The value of climatological, categorical, and probabilistic forecasts in the cost–loss ratio situation. Mon. Wea. Rev., 105 , 803816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and Winkler R. L. , 1977: Reliability of subjective probability forecasts of precipitation and temperature. Appl. Stat., 26 , 6178.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and Winkler R. L. , 1987: A general framework for forecast verification. Mon. Wea. Rev., 115 , 13301338.

  • Palmer, T. N., Brankovic C. , and Richardson D. S. , 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc., 126 , 20132034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal to Interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., Kumar A. , Barnston A. G. , and Goddard L. , 2000: Simulation skills of the SST-forced global climate variability of the NCEP–MRF9 and Scripps–MPI ECHAM3 models. J. Climate, 13 , 36573679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., Kumar A. , Van den Dool A. H. , and Barnston A. G. , 2002: An analysis of multimodel ensemble predictions for seasonal climate anomalies. J. Geophys. Res., 107 , 4710. doi:10.1029/2002JD002712.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., Lall U. , Zebiak S. E. , and Goddard L. , 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132 , 27322744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Särndal, C-E., Swensson B. , and Wretman J. , 1992: Model Assisted Survey Sampling. Springer-Verlag, 712 pp.

  • Stephens, M. A., 1974: EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc., 69 , 730737.

  • Stephenson, D. B., and Doblas-Reyes F. J. , 2000: Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus, 52A , 300322.

    • Search Google Scholar
    • Export Citation
  • Swets, J. A., 1973: The relative operating characteristic in psychology. Science, 182 , 9901000.

  • Taylor, J. R., 1997: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd ed. University Science Books, 327 pp.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. C., 1962: Economic gains from scientific advances and operational improvement sin meteorological prediction. J. Appl. Meteor., 1 , 1317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., and Kalnay E. , 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting, 8 , 379398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H., and Toth Z. , 1991: Why do forecasts for “near normal” often fail? Wea. Forecasting, 6 , 7685.

  • Vislocky, R. L., and Fritsch J. M. , 1995: Improved model output statistics forecasts through model consensus. Bull. Amer. Meteor. Soc., 76 , 11571164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., Liniger M. A. , and Appenzeller C. , 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134 , 241260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • WMO, 2002: Standardised Verification System (SVS) for Long-Range Forecasts (LRF). New attachment II-9 to the manual on the GDPS. Vol. 1. WMO-No. 485, 24 pp.

    • Search Google Scholar
    • Export Citation
  • WMO, cited. 2007: Report of WMO/KMA Workshop of Global Producing Centres on Lead Centre for Long-Range Forecast Multi-Model Ensemble Prediction. [Available online at http://www.wmo.int/pages/prog/www/DPFS/Reports/Wshop-LCLRFMME_Busan.doc].

    • Search Google Scholar
    • Export Citation
  • WMO, cited. 2008: Meeting of the Expert Team on Extended and Long-Range Forecasting. [Available online at http://www.wmo.int/pages/prog/www/DPFS/Reports/ET-ELRF_Beijing2008.doc].

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observation, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12 , 825848.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1226 401 100
PDF Downloads 805 151 8