A Preliminary Statistical Study of Correlations between Inflow Feeder Clouds, Supercell or Multicell Thunderstorms, and Severe Weather

Rebecca J. Mazur NOAA/National Weather Service, Cheyenne, Wyoming

Search for other papers by Rebecca J. Mazur in
Current site
Google Scholar
PubMed
Close
,
John F. Weaver Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by John F. Weaver in
Current site
Google Scholar
PubMed
Close
, and
Thomas H. Vonder Haar Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas H. Vonder Haar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the relationship between severe weather and organized lines of cumulus towers, called feeder clouds, which form in the inflow region of supercell and multicell thunderstorms. Using Geostationary Operational Environmental Satellite (GOES) imagery, correlations between the occurrence of feeder clouds and severe weather reports are explored. Output from the Weather Surveillance Radar-1988 Doppler (WSR-88D) mesocyclone detection algorithm (MDA) is also assessed for a subset of the satellite case days. Statistics from the satellite and radar datasets are assembled to estimate not only the effectiveness of feeder cloud signatures as sole predictors of severe weather, but also the potential utility of combining feeder cloud analysis with the radar’s MDA output.

Results from this study suggest that the formation of feeder clouds as seen in visible satellite imagery is often followed by the occurrence of severe weather in a storm. The study finds that feeder cloud signatures by themselves have low skill in predicting severe weather. However, if feeder clouds are observed in a storm, there is a 77% chance that severe weather will occur within 30 min of the observation. For the cases considered, the MDA turns out to be the more effective predictor of severe weather. However, results show that combined predictions (feeder clouds plus mesocyclones) outperform both feeder cloud signatures and the MDA as separate predictors by ∼10%–20%. Thus, the presence of feeder clouds as observed in visible imagery is a useful adjunct to the MDA in diagnosing a storm’s potential for producing severe weather.

Corresponding author address: Rebecca J. Mazur, NOAA/National Weather Service, 1301 Airport Parkway, Cheyenne, WY 82001. Email: rebecca.mazur@noaa.gov

Abstract

This study examines the relationship between severe weather and organized lines of cumulus towers, called feeder clouds, which form in the inflow region of supercell and multicell thunderstorms. Using Geostationary Operational Environmental Satellite (GOES) imagery, correlations between the occurrence of feeder clouds and severe weather reports are explored. Output from the Weather Surveillance Radar-1988 Doppler (WSR-88D) mesocyclone detection algorithm (MDA) is also assessed for a subset of the satellite case days. Statistics from the satellite and radar datasets are assembled to estimate not only the effectiveness of feeder cloud signatures as sole predictors of severe weather, but also the potential utility of combining feeder cloud analysis with the radar’s MDA output.

Results from this study suggest that the formation of feeder clouds as seen in visible satellite imagery is often followed by the occurrence of severe weather in a storm. The study finds that feeder cloud signatures by themselves have low skill in predicting severe weather. However, if feeder clouds are observed in a storm, there is a 77% chance that severe weather will occur within 30 min of the observation. For the cases considered, the MDA turns out to be the more effective predictor of severe weather. However, results show that combined predictions (feeder clouds plus mesocyclones) outperform both feeder cloud signatures and the MDA as separate predictors by ∼10%–20%. Thus, the presence of feeder clouds as observed in visible imagery is a useful adjunct to the MDA in diagnosing a storm’s potential for producing severe weather.

Corresponding author address: Rebecca J. Mazur, NOAA/National Weather Service, 1301 Airport Parkway, Cheyenne, WY 82001. Email: rebecca.mazur@noaa.gov

Save
  • Adler, R. F., and Fenn D. D. , 1979: Thunderstorm intensity as determined from satellite data. J. Climate Appl. Meteor., 18 , 502517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Mack R. A. , 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43 , 19451960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., Wakimoto R. M. , and Ziegler C. L. , 1998: Observations of finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126 , 525550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and Wood V. T. , 1991: On the interpretation of single-Doppler velocity patterns within severe thunderstorms. Wea. Forecasting, 6 , 3248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., Klimowski B. A. , Zeitler J. W. , Thompson R. L. , and Weisman M. L. , 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15 , 6179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., 1976: Single-Doppler radar vortex recognition. Part I: Mesoscale signatures. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 97–103.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Rutledge S. A. , and Petersen W. A. , 2003: The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998. Mon. Wea. Rev., 131 , 12111228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., Dyer R. M. , and Kraus M. J. , 1975: An objective evaluation of techniques for predicting severe weather elements. Preprints, Ninth Conf. on Severe Local Storms, Boston, MA, Amer. Meteor. Soc., 321–326.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Blackmer R. H. Jr., 1988: Satellite-observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116 , 22002224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Ghosh K. K. , and Chen L. C. , 1983: An interactive system for compositing digital radar and satellite data. J. Climate Appl. Meteor., 22 , 705713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Doswell C. A. III, 1992: Severe local storm forecasting. Wea. Forecasting, 7 , 588612.

  • Jones, I. A., McGrath K. M. , and Snow J. T. , 2004: Association between NSSL mesocyclone detection algorithm-detected vortices and tornadoes. Wea. Forecasting, 19 , 872890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and Vonder Haar T. H. , 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

  • Klemp, J. B., Wilhelmson R. B. , and Ray P. S. , 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38 , 15581580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc., 80 , 271284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33 , 686694.

  • Lemon, L. R., and Doswell C. A. III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornado genesis. Mon. Wea. Rev., 107 , 11841197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111 , 887894.

  • Moller, A. R., 2001: Severe local storms forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

  • Moller, A. R., Doswell C. A. III, Foster M. P. , and Woodall G. R. , 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9 , 327347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcasting, K. A. Browning, Ed., Academic Press, 149–166.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., Walsh J. E. , and Charlevoix D. J. , 2002: Severe and Hazardous Weather. Kendhall/Hunt, 616 pp.

  • Rotunno, R., and Klemp J. B. , 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and Purdom J. F. W. , 1986: The use of satellite data for mesoscale analyses and forecasting applications. Mesometeorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 118–150.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Witt A. W. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory: Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13 , 304326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Stumpf G. J. , and Manross K. L. , 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20 , 680687.

  • Weaver, J., and Purdom J. F. W. , 1995: An interesting mesoscale storm–environment interaction observed just prior to changes in severe storm behavior. Wea. Forecasting, 10 , 449453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J., and Lindsey D. , 2004: Some frequently overlooked severe thunderstorm characteristics observed on GOES imagery: A topic for future research. Mon. Wea. Rev., 132 , 15291533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J., Purdom J. F. W. , and Szoke K. J. , 1994: Some mesoscale aspects of the 6 June 1990 Limon, Colorado, tornado case. Wea. Forecasting, 9 , 4561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J., Knaff J. A. , Bikos D. , Wade G. S. , and Daniels J. M. , 2002: Satellite observations of a severe supercell thunderstorm on 24 July 2000 made during the GOES-11 science test. Wea. Forecasting, 17 , 124138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128 , 40174030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wilson J. W. , and Wakimoto R. M. , 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124 , 769784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wilson J. W. , Wakimoto R. M. , and Crook N. A. , 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125 , 505526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Horst T. W. , and Wilson J. W. , 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127 , 21602179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Foote G. B. , Crook N. A. , Fankhauser J. C. , Wade C. G. , Tuttle J. D. , and Mueller C. K. , 1992: The role of boundary-layer convergence zones and horizontal convective rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120 , 17851815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. , Johnson J. T. , and Thomas K. W. , 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13 , 513518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., Brown R. A. , and Burgess D. W. , 1996: Duration and movement of mesocyclones associated with southern Great Plains thunderstorms. Mon. Wea. Rev., 124 , 97101.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 359 128 56
PDF Downloads 154 69 6