Strong Cross-Barrier Flow under Stable Conditions Producing Intense Winter Orographic Precipitation: A Case Study over the Subtropical Central Andes

Maximiliano Viale Programa Regional de Meteorología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT–CONICET, Mendoza, Argentina

Search for other papers by Maximiliano Viale in
Current site
Google Scholar
PubMed
Close
and
Federico A. Norte Programa Regional de Meteorología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT–CONICET, Mendoza, Argentina

Search for other papers by Federico A. Norte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The most intense orographic precipitation event over the subtropical central Andes (36°–30°S) during winter 2005 was examined using observational data and a regional model simulation. The Eta-Programa Regional de Meteorología (PRM) model forecast was evaluated and used to explore the airflow structure that generated this heavy precipitation event, with a focus on orographic influences. Even though the model did not realistically reproduce any near-surface variables, nor the precipitation shadow in the leeside lowlands, its reliable forecast of heavy precipitation over the windward side and the wind fields suggests that it can be used as a valuable forecasting tool for such events in the region.

The synoptic flow of the 26–29 August 2005 storm responded to a well-defined dipole from low to upper levels with anomalous low (high) geopotential heights at midlatitudes (subtropical) latitudes located off the southeast Pacific coast, resulting in a large meridional geopotential height gradient that drove a strong anomalous cross-barrier flow. Precipitation enhancement in the Andes was observed during the entire event; however, the highest rates were in the prefrontal sector under the low-level stable stratification and cross-barrier winds exceeding 2.5 standard deviations (σ) from the climatological monthly mean. The combination of strong cross-mountain winds with the stable stratification in the air mass of a frontal system, impinging on the high Andes range, appears to be the major factor in determining the flow structure that produced the pattern of precipitation enhancement, with uplift maximized near mountaintops and low-level blocking upwindleading to the formation of a low-level along-barrier jet. Additionally, only the upstream wind anomalies for the 15 heaviest events over a 10-yr (1967–76) period were investigated. They exhibited strong anomalous northwesterly winds for 14 of the 15 events, whereas for the remaining event there were no available observations to evaluate. Thus, these anomalies may also be exploited for forecasting capabilities.

Corresponding author address: Maximiliano Viale, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Av. Adrián Ruiz Leal s/n, Parque Gral. San Martín, CC 330, 5500 Mendoza, Argentina. Email: maxiviale@prmarg.org

Abstract

The most intense orographic precipitation event over the subtropical central Andes (36°–30°S) during winter 2005 was examined using observational data and a regional model simulation. The Eta-Programa Regional de Meteorología (PRM) model forecast was evaluated and used to explore the airflow structure that generated this heavy precipitation event, with a focus on orographic influences. Even though the model did not realistically reproduce any near-surface variables, nor the precipitation shadow in the leeside lowlands, its reliable forecast of heavy precipitation over the windward side and the wind fields suggests that it can be used as a valuable forecasting tool for such events in the region.

The synoptic flow of the 26–29 August 2005 storm responded to a well-defined dipole from low to upper levels with anomalous low (high) geopotential heights at midlatitudes (subtropical) latitudes located off the southeast Pacific coast, resulting in a large meridional geopotential height gradient that drove a strong anomalous cross-barrier flow. Precipitation enhancement in the Andes was observed during the entire event; however, the highest rates were in the prefrontal sector under the low-level stable stratification and cross-barrier winds exceeding 2.5 standard deviations (σ) from the climatological monthly mean. The combination of strong cross-mountain winds with the stable stratification in the air mass of a frontal system, impinging on the high Andes range, appears to be the major factor in determining the flow structure that produced the pattern of precipitation enhancement, with uplift maximized near mountaintops and low-level blocking upwindleading to the formation of a low-level along-barrier jet. Additionally, only the upstream wind anomalies for the 15 heaviest events over a 10-yr (1967–76) period were investigated. They exhibited strong anomalous northwesterly winds for 14 of the 15 events, whereas for the remaining event there were no available observations to evaluate. Thus, these anomalies may also be exploited for forecasting capabilities.

Corresponding author address: Maximiliano Viale, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Av. Adrián Ruiz Leal s/n, Parque Gral. San Martín, CC 330, 5500 Mendoza, Argentina. Email: maxiviale@prmarg.org

Save
  • Araneo, D. C., and Compagnucci R. H. , 2008: Atmospheric circulation features associated to Argentinean Andean rivers discarge variability. Geophys. Res. Lett., 35 , L01805. doi:10.1029/2007GL032427.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part 1: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column test using GATE wave, BOMEX, and Arctic airmasses data sets. Quart. J. Roy. Meteor. Soc., 112 , 13061335.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9 , 256278.

  • Bousquet, O., and Smull B. F. , 2003: Airflow and precipitation fields within deep alpine valleys observed by airborne Doppler radar. J. Appl. Meteor., 42 , 391409.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Mass C. F. , 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128 , 593617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Westrick K. J. , and Mass C. F. , 1999: Evaluation of the MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Mass C. F. , and Westrick K. J. , 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15 , 730744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and Klemp J. B. , 1982: The effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39 , 21522158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ereño, C. E., and Hoffman J. , 1978: The pluvial regime in the Central Cordillera (in Spanish). Geography Notebook Series, Vol. 5, Faculty of Philosophy and Letters, University of Buenos Aires, 17 pp. [Available from Library, Faculty of Philosophy and Letters, Institute of Geography “R. Ardissone,” 4th Fl., Puan 470, Buenos Aires, Argentina].

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and Garreaud R. , 2007: Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. J. Hydrometeor., 8 , 171193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus W. A. Jr., , 2000: The impact of step orography on flow in the Eta Model: Two contrasting examples. Wea. Forecasting, 15 , 630637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., Smull B. , and Mass C. , 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64 , 711736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, J. A. J., 1975: Maps of Mean Temperature and Precipitation. Part I, Climatic Atlas of South America, WMO, 4 pp.

  • Hoskins, B. J., and Hodges K. I. , 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Houze R. A. Jr., , and Medina S. , 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62 , 35993623.

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1994: The step-mountain coordinate: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., Grum R. H. , Hart R. , Bosart L. F. , Bell K. M. , and Pereira F. J. , 2008: Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of northern California. Wea. Forecasting, 23 , 336356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Lackmann, G. M., and Gyakum J. R. , 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14 , 687700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44 , 159173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and Houze R. A. Jr., 2003: Air motions and precipitation growth for orographic precipitation enhancement. Quart. J. Roy. Meteor. Soc., 129 , 345371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., Smull B. F. , Houze R. A. Jr., and Steiner M. , 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62 , 35803598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1984: A blocking technique for representation in atmospheric models. Riv. Meteor. Aeronaut., 44 , 195202.

  • Mesinger, F., Janjić Z. I. , Nickovic S. , Gavrilov D. , and Deaven D. G. , 1988: The step-mountain coordinate: Model description and performance for cases of Alpine cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116 , 14931518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., Jovic D. , Chou S. C. , Gomes J. L. , and Bustamante J. F. , 2006: Wind forecast around the Andes using the sloping discretization of the eta coordinate. Preprints, Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, Amer. Meteor. Soc., 1837–1848.

    • Search Google Scholar
    • Export Citation
  • Montecinos, A., Díaz A. , and Aceituno P. , 2000: Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J. Climate, 13 , 746758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norte, F. A., 1988: Características del viento Zonda en la región de Cuyo-Argentina (Characteristics of the Zonda wind in the Cuyo-Argentina region). Ph.D. thesis, University of Buenos Aires, 255 pp.

  • Pandey, G. R., Cayan D. R. , and Georgakakos K. P. , 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104 , (D10). 1201912030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a Sierra Nevada shallow orographic cloud system. J. Appl. Meteor., 31 , 324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Satyamurty, P., Nobre C. A. , and Silva Dias P. L. , 1999: South America. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 119–139.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., and Chou S. C. , 2001: Evaluation of two Eta versions for weather forecast over South America. Geofis. Int., 40 , 219237.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., Norte F. A. , Satyamurty P. , and Chou S. C. , 2003: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta–CPTEC regional model. Wea. Forecasting, 18 , 481501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., Garreaud R. D. , Norte F. A. , and Saulo A. C. , 2006: Influence of the subtropical Andes on baroclinic disturbance: A cold front case study. Mon. Wea. Rev., 134 , 33173335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., Wratt D. S. , Henderson R. D. , and Gray W. R. , 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36 , 428442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Evans J. P. , 2007: Orographic precipitation and isotope fraction over the southern Andes. J. Hydrometeor., 8 , 314.

  • Trenberth, K. E., 1991: Storm tracks in Southern Hemisphere. J. Atmos. Sci., 48 , 21592178.

  • Viale, M., Naumann G. , and Norte F. A. , 2008: Extreme orographic precipitation events over the central Andes of Argentina and Chile. Preprints, 13th Conf. on Mountain Meteorology, Whistler, BC, Canada, Amer. Meteor. Soc., P1.22. [Available online at http://ams.confex.com/ams/pdfpapers/141084.pdf].

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and Carr F. H. , 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125 , 19311953.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 900 389 30
PDF Downloads 387 161 4