A Comparison of Precipitation Forecast Skill between Small Convection-Allowing and Large Convection-Parameterizing Ensembles

Adam J. Clark Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
,
William A. Gallus Jr. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by William A. Gallus Jr. in
Current site
Google Scholar
PubMed
Close
,
Ming Xue School of Meteorology and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
, and
Fanyou Kong Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Fanyou Kong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An experiment has been designed to evaluate and compare precipitation forecasts from a 5-member, 4-km grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20) Weather Research and Forecasting (WRF) model ensemble, which cover a similar domain over the central United States. The ensemble forecasts are initialized at 2100 UTC on 23 different dates and cover forecast lead times up to 33 h. Previous work has demonstrated that simulations using convection-allowing resolution (CAR; dx ∼ 4 km) have a better representation of the spatial and temporal statistical properties of convective precipitation than coarser models using convective parameterizations. In addition, higher resolution should lead to greater ensemble spread as smaller scales of motion are resolved. Thus, CAR ensembles should provide more accurate and reliable probabilistic forecasts than parameterized-convection resolution (PCR) ensembles.

Computation of various precipitation skill metrics for probabilistic and deterministic forecasts reveals that ENS4 generally provides more accurate precipitation forecasts than ENS20, with the differences tending to be statistically significant for precipitation thresholds above 0.25 in. at forecast lead times of 9–21 h (0600–1800 UTC) for all accumulation intervals analyzed (1, 3, and 6 h). In addition, an analysis of rank histograms and statistical consistency reveals that faster error growth in ENS4 eventually leads to more reliable precipitation forecasts in ENS4 than in ENS20. For the cases examined, these results imply that the skill gained by increasing to CAR outweighs the skill lost by decreasing the ensemble size. Thus, when computational capabilities become available, it will be highly desirable to increase the ensemble resolution from PCR to CAR, even if the size of the ensemble has to be reduced.

Corresponding author address: Adam J. Clark, Iowa State University, 3010 Agronomy Hall, Ames, IA 50010. Email: clar0614@iastate.edu

Abstract

An experiment has been designed to evaluate and compare precipitation forecasts from a 5-member, 4-km grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20) Weather Research and Forecasting (WRF) model ensemble, which cover a similar domain over the central United States. The ensemble forecasts are initialized at 2100 UTC on 23 different dates and cover forecast lead times up to 33 h. Previous work has demonstrated that simulations using convection-allowing resolution (CAR; dx ∼ 4 km) have a better representation of the spatial and temporal statistical properties of convective precipitation than coarser models using convective parameterizations. In addition, higher resolution should lead to greater ensemble spread as smaller scales of motion are resolved. Thus, CAR ensembles should provide more accurate and reliable probabilistic forecasts than parameterized-convection resolution (PCR) ensembles.

Computation of various precipitation skill metrics for probabilistic and deterministic forecasts reveals that ENS4 generally provides more accurate precipitation forecasts than ENS20, with the differences tending to be statistically significant for precipitation thresholds above 0.25 in. at forecast lead times of 9–21 h (0600–1800 UTC) for all accumulation intervals analyzed (1, 3, and 6 h). In addition, an analysis of rank histograms and statistical consistency reveals that faster error growth in ENS4 eventually leads to more reliable precipitation forecasts in ENS4 than in ENS20. For the cases examined, these results imply that the skill gained by increasing to CAR outweighs the skill lost by decreasing the ensemble size. Thus, when computational capabilities become available, it will be highly desirable to increase the ensemble resolution from PCR to CAR, even if the size of the ensemble has to be reduced.

Corresponding author address: Adam J. Clark, Iowa State University, 3010 Agronomy Hall, Ames, IA 50010. Email: clar0614@iastate.edu

Save
  • Baldwin, M. E., and Mitchell K. E. , 1997: The NCEP hourly multisensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., Lakshmivarahan S. , and Kain J. S. , 2001: Verification of mesoscale features in NWP models. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 255–258.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single-column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Wyngaard J. C. , and Fritsch J. M. , 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., Hollingsworth A. , Lalaurette F. , and Ghelli A. , 1999: Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Wea. Forecasting, 14 , 168189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., Kain J. S. , and Baldwin M. E. , 2006: Bowing convective systems in a popular operational model: Are they for real? Wea. Forecasting, 21 , 307324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and Suarez M. J. , 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T. C. , 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135 , 34563473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T. C. , 2008: Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev., 136 , 21402156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Manning K. W. , Carbone R. E. , Trier S. B. , and Tuttle J. D. , 2003: Coherence of warm season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85 , 10751093.

  • Davis, C. A., Brown B. , and Bullock R. , 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134 , 17721784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , and Bullock R. , 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134 , 17851795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. , and Weisman M. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5 , 110117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., Mullen S. L. , and Sanders F. , 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and Coauthors, 2004: The NOAA/NWS/NCEP Short Range Ensemble Forecast (SREF) system: Evaluation of an initial condition vs multiple model physics ensemble approach. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 21.3. [Available online at http://ams.confex.com/ams/pdfpapers/71107.pdf].

    • Search Google Scholar
    • Export Citation
  • Du, J., McQueen J. , DiMego G. , Toth Z. , Jovic D. , Zhou B. , and Chuang H. , 2006: New dimension of NCEP Short-Range Ensemble Forecasting (SREF) system: Inclusion of WRF members. Preprints, Expert Team Meeting on Ensemble Prediction System, Exeter, United Kingdom, WMO.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and Hicks B. B. , 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96 , 715721.

  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129 , 24612480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and McBride J. L. , 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239 , 179202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and Mass C. F. , 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20 , 328350.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Jin Y. , Lin Y. , Black T. , Rogers E. , and DiMego G. , 2002: Implementation of a new grid-scale cloud and rainfall scheme in the NCEP Eta Model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmour, I., Smith L. A. , and Buizza R. , 2001: Linear regime duration: Is 24 hours a long time in synoptic weather forecasting? J. Atmos. Sci., 58 , 35253539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14 , 155167.

  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129 , 550560.

  • Harvey, L. O., Hammond K. R. , Lusk C. M. , and Mross E. F. , 1992: The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120 , 863883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hong, S-Y., and Lim J-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Kor. Meteor. Soc., 42 , 129151.

  • Houtekamer, P. L., Lefaivre L. , Derome J. , Ritchie H. , and Mitchell H. L. , 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124 , 12251242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso-model. NCEP Office Note 437, NOAA/NWS, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82 , 271285.

  • Jankov, I., Gallus W. A. Jr., Segal M. , Shaw B. , and Koch S. E. , 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20 , 10481060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, M. S., Colle B. A. , and Tongue J. S. , 2007: Evaluation of a mesoscale short-range ensemble forecast system over the northeast United States. Wea. Forecasting, 22 , 3655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritcsh scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1998: Multiscale convective overturning in mesoscale convective systems: Reconciling observations, simulations, and theory. Mon. Wea. Rev., 126 , 22542273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23 , 931952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparison of coarse- and fine-grid experiments. Mon. Wea. Rev., 134 , 807833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2007a: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system, Part II. Storm-scale experiments. Mon. Wea. Rev., 135 , 759782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2007b: Preliminary analysis on the real-time storm-scale ensemble forecasts produced as a part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.2. [Available online at http://ams.confex.com/ams/pdfpapers/124667.pdf].

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102 , 409418.

  • Liu, C., Moncrieff M. W. , Tuttle J. D. , and Carbone R. E. , 2006: Explicit and parameterized episodes of warm-season precipitation over the continental United States. Adv. Atmos. Sci., 23 , 91105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111 , 14751493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mason, S. J., and Graham N. E. , 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128 , 21452166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., Buizza R. , Palmer T. N. , and Petroliagis T. , 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 151 , 163187.

    • Search Google Scholar
    • Export Citation
  • Mylne, K. R., 1999: The use of forecast value calculations for optimal decision making using probability forecasts. Preprints, 17th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 235–239.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Cheon W. G. , Hong S-Y. , and Raasch S. , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nutter, P., Stensrud D. , and Xue M. , 2004: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Wea. Rev., 132 , 23582377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, F., Molteni R. , Mureau R. , Buizza P. , Chapelet P. , and Tribbia J. , 1992: Ensemble prediction. ECMWF Research Dept. Tech. Memo. 188, 45 pp.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petch, J. C., 2006: Sensitivity studies of developing convection in a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 132 , 345358.

  • Richardson, D. S., 2000: Applications of cost-loss models. Proc. Seventh Workshop on Meteorological Operational Systems, Reading, United Kingdom, ECMWF, 209–213.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127 , 24732489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5 , 570575.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech Note NCAR/TN-468+STR, 88 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307; and online at http://box.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf].

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull. Amer. Meteor. Soc., 50 , 286311.

  • Stensrud, D. J., Bao J. , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., Vautard R. , and Strauss B. , 1999: Evaluation of probabilistic prediction systems. Proc. Workshop on Predictability, Reading, United Kingdom, ECMWF, 1–25.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Tuttle, J. D., and Davis C. A. , 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134 , 22972317.

  • Wandishin, M. S., Mullen S. L. , Stensrud D. J. , and Brooks H. E. , 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129 , 729747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96 , 6790.

  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23 , 407437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.1. [Available online at http://ams.confex.com/ams/pdfpapers/142036.pdf].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3849 2153 38
PDF Downloads 933 226 5