• Allen, D. J., , Kasibhatla P. , , Thompson A. M. , , Rood R. B. , , Doddridge B. G. , , Pickering K. E. , , Hudson R. D. , , and Lin S-J. , 1996: Transport induced interannual variability of carbon monoxide determined using a chemistry and transport model. J. Geophys. Res., 101 , 2865528669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., , Bretherton C. S. , , Jakob C. , , Andreas E. L. , , Intrieri J. M. , , and Uttal T. A. , 2000: A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. J. Geophys. Res., 105 , 1233712349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , Chen F. , , Mitchell K. E. , , and Jancic Z. I. , 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data. Mon. Wea. Rev., 125 , 28962916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast experiments. Wea. Forecasting, 9 , 265278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, T. L., and Coauthors, 1997: Changes to the Eta forecast systems. NWS Tech. Procedures Bull. 441, 16 pp.

  • Bromwich, D. H., , and Wang S. H. , 2005: Evaluation of the NCEP–NCAR and ECMWF 15- and 40-yr reanalyses using rawinsonde data from two independent Arctic field experiments. Mon. Wea. Rev., 133 , 35623578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, T. A., , and Gyakum J. R. , 1993: A diagnostic study of cyclogenesis in the western North Pacific Ocean. Mon. Wea. Rev., 121 , 6575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 529.

  • Curry, J. A., , and Herman G. F. , 1985a: Infrared radiative properties of summertime Arctic stratus clouds. J. Appl. Meteor., 24 , 525538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , and Herman G. F. , 1985b: Relationships between large-scale heat and moisture budgets and the occurence of Arctic stratus clouds. Mon. Wea. Rev., 113 , 14411457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • ECMWF, cited. 2007a: ECMWF technical information: model level definitions. [Available online at www.ecmwf.int/products/data/technical/model_levels/index.html].

    • Search Google Scholar
    • Export Citation
  • ECMWF, cited. 2007b: Full scientific documentation of the ECMWF Integrated Forecast System (IFS). [Available online at http://www.ecmwf.int/research/ifsdocs/CY28r1/index.html].

    • Search Google Scholar
    • Export Citation
  • ECMWF, cited. 2008a: ECMWF overview. [Available online at http://www.ecmwf.int/about/overview].

  • ECMWF, cited. 2008b: The evolution of the ECMWF analysis and forecasting system. [Available online at http://www.ecmwf.int/products/data/operational_system/evolution/index.html].

    • Search Google Scholar
    • Export Citation
  • Efron, B., , and Tibshirani R. , 1991: Statistical data analysis in the computer age. Science, 253 , 390395.

  • Eloranta, E. W., 2005: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer-Verlag, 460 pp.

  • Fels, S. B., , and Schwarzkopf M. D. , 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32 , 14751488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fett, R. W., , Burk S. D. , , Thompson W. T. , , and Kozo T. L. , 1994: Environmental phenomena of the Beaufort Sea observed during the Leads Experiment. Bull. Amer. Meteor. Soc., 75 , 21312145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., , Anderson J. R. , , Grumm R. H. , , and Gruner E. L. , 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117 , 11411155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. dissertation, Atmospheric Science Paper 637, Dept. of Atmospheric Science, Colorado State University, 289 pp.

  • Harrington, J. Y., , Reisin T. , , Cotton W. R. , , and Kreidenweis S. M. , 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 55 , 4575.

    • Search Google Scholar
    • Export Citation
  • Herman, G., , and Goody R. , 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33 , 15371553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , Yuang H. M. , , and Zhao Q. , 1998: Implementing of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126 , 26212639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortal, M., , and Simmons A. J. , 1991: Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev., 119 , 10571074.

  • Keegan, T. J., 1958: Arctic synoptic activity in winter. J. Meteor., 15 , 513521.

  • Key, J. R., , and Chan A. C. , 1999: Multidecadal global and regional trends in 1000 mb and 500 mb cyclone frequencies. Geophys. Res. Lett., 26 , 20532056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and Wilhelmson R. B. , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., , and Hansen J. E. , 1974: A parameterization of the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31 , 118133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S. J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S. J., , Chao W. C. , , Sud Y. C. , , and Walker G. K. , 1994: A class of the van Leer–type transport schemes and its applications to the moisture transport in a general circulation model. Mon. Wea. Rev., 122 , 15751593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., , Zhang J. , , Schweiger A. , , Steele M. , , and Stern H. , 2009: Arctic sea-ice retreat in 2007 follows thinning trend. J. Climate, 22 , 165176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., and Coauthors, 2006: A bootstrap technique for testing the relationship between local-scale radar observations of cloud occurrence and large-scale atmospheric fields. J. Atmos. Sci., 63 , 28132830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattioli, V., , Westwater E. R. , , Cimini D. , , Liljegren J. C. , , Lesht B. M. , , Gutman S. I. , , and Schmidlin F. J. , 2007: Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Oceanic Technol., 24 , 415431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., , Janjic Z. I. , , Kickovic S. , , Gavrilov D. , , and Deaven D. G. , 1988: The step-mountain coordinate: Model description and performance for cases of Alpine lee cyclogenesis and for a case of Appalachian redevelopment. Mon. Wea. Rev., 116 , 14931518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , Walko R. L. , , Harrington J. Y. , , and Cotton W. R. , 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, P. M., , and da Silva A. M. , 2007: Assimilation of satellite cloud data in the GMAO finite-volume data assimilation system using a parameter estimation method. Part I: Motivation and algorithm description. J. Atmos. Sci., 64 , 38803895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and Pease C. H. , 1982: Cyclone climatology of the Bering Sea and its relation to sea ice extent. Mon. Wea. Rev., 110 , 513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., , Cavalieri D. J. , , Gloersen P. , , Zwally H. J. , , and Comiso J. C. , 1999: Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 104 , 2083720856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partington, K., , Flynn T. , , Lamb D. , , Bertoia C. , , and Dedrick K. , 2003: Late twentieth century Northern Hemisphere sea-ice record from U.S. National Ice Center ice charts. J. Geophys. Res., 108 , 3343. doi:10.01029/2001JC001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riphagen, H. A., , Bruyere C. L. , , Jordaan W. , , Poolman E. R. , , and GertenBach J. D. , 2002: Experiments with the NCEP regional Eta Model at the South African Weather Bureau, with emphasis on terrain representation and its effect on precipitation predictions. Mon. Wea. Rev., 130 , 12461263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., , Black T. L. , , Deaven D. G. , , DiMego G. J. , , Zhao Q. , , Baldwin M. , , Junker N. W. , , and Lin Y. , 1996: Changes to the “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11 , 391413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rood, R. B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25 , 71100.

  • Rothrock, D. A., , Zhang J. , , and Yu Y. , 2003: The Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108 , 3083. doi:10.1029/2001JC001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., , and Gyakum J. R. , 1980: Synoptic-dynamic climatology of the “bomb”. Mon. Wea. Rev., 108 , 15891606.

  • Sassen, K., 1994: Advances in polarization diversity lidar for cloud remote sensing. Proc. IEEE Remote Sens. Instruments Environ. Res., 82 , 19071914.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , and Barry R. G. , 1988: Synoptic activity in the Arctic basin. J. Climate, 1 , 12761295.

  • Serreze, M. C., , Box J. E. , , Barry R. G. , , and Walsh J. E. , 1993: Characteristics of Arctic synoptic activity, 1952–1989. Meteor. Atmos. Phys., 51 , 147164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2003: A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30 , 1110. doi:10.1029/2002GL016406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and Burridge D. M. , 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development of a cloud prediction model for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

  • Steffen, K., , and DeMaria T. , 1996: Surface energy fluxes of Arctic winter sea ice in the Barrow Strait. J. Appl. Meteor., 35 , 20672079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasova, T. A., , Fernandez J. P. , , Pisnichenko I. A. , , Marengo J. A. , , Ceballos J. C. , , and Bottino M. J. , 2006: Impact of new solar radiation parameterization in the Eta Model on the simulation of summer climate over South America. J. Appl. Meteor. Climatol., 45 , 318333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88 , 205221.

  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10 , 6582.

  • Wylie, D. P., 1999: Arctic weather during the FIRE/ACE flights in 1998. J. Geophys. Res., 106 , 1536315375.

  • Xu, K. M., , and Randall D. A. , 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53 , 30843102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarnal, B., , and Henderson K. G. , 1989: A climatology of polar low cyclogenetic regions over the North Pacific Ocean. J. Climate, 2 , 14761491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yucel, I., , Shuttleworth W. J. , , Washburne J. , , and Chen F. , 1998: Evaluating NCEP Eta Model–derived data against observations. Mon. Wea. Rev., 126 , 19771991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., , Walsh J. E. , , Zhang J. , , Bhatt U. S. , , and Ikeda M. , 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17 , 23002317.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 2
PDF Downloads 0 0 0

Statistical Analysis of Forecasting Models across the North Slope of Alaska during the Mixed-Phase Arctic Clouds Experiment

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The National Centers for Environmental Prediction’s (NCEP) Eta Model, the models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Aeronautics and Space Administration’s (NASA) Global Modeling and Assimilation Office (GMAO) models, and the Regional Atmospheric Modeling System (RAMS) model are all examined during the Mixed-Phase Arctic Clouds Experiment (MPACE) that took place from 27 September through 22 October 2004. During two intensive observation periods, soundings were launched every 6 h from four sites across the North Slope of Alaska (NSA): Barrow, Atqasuk, Oliktok Point, and Toolik Lake. Measurements of temperature, moisture, and winds, along with surface measurements of radiation and cloud cover, were compared to model outputs from the Eta, ECMWF, GMAO, and RAMS models using the bootstrap statistical technique to ascertain if differences in model performance were statistically significant. Ultimately, three synoptic regimes controlled NSA weather during the MPACE period for varying amounts of time. Each posed a unique challenge to the forecasting models during the study period.

Temperature forecasts for all models were good at the MPACE sites with mean bias errors generally under 2 K, and the models had the fewest significant errors predicting temperature. Forecasting moisture and wind proved to be more difficult for the models, especially aloft in the 500–300-hPa layer. The largest errors occurred in the GMAO model, with significant moist biases of 40% and wind errors of 10 m s−1 or more. The RAMS, Eta, and ECMWF models had smaller moist biases in this layer. Both the Eta and RAMS models overestimated the surface incident shortwave radiation, underestimated longwave radiation, and underestimated cloud cover fraction. Overall, the bootstrapping results coincided with findings from conventional statistical comparisons as model outputs with the largest errors were most likely to be captured and declared statistically significant in the bootstrapping process.

The significant model errors during MPACE were predominantly traced to the inability of the models to simulate disturbances in synoptic regime I, warm or cold biases over higher inland terrain, a warm bias along the NSA coastal waters in the Beaufort Sea, and difficulty in forecasting the intensity of the explosive cyclone in synoptic regime III.

Corresponding author address: Victor Yannuzzi, 3780 30th Ave. South, Apt. 303, Grand Forks, ND 58201. Email: vicyannuzzi@gmail.com

Abstract

The National Centers for Environmental Prediction’s (NCEP) Eta Model, the models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Aeronautics and Space Administration’s (NASA) Global Modeling and Assimilation Office (GMAO) models, and the Regional Atmospheric Modeling System (RAMS) model are all examined during the Mixed-Phase Arctic Clouds Experiment (MPACE) that took place from 27 September through 22 October 2004. During two intensive observation periods, soundings were launched every 6 h from four sites across the North Slope of Alaska (NSA): Barrow, Atqasuk, Oliktok Point, and Toolik Lake. Measurements of temperature, moisture, and winds, along with surface measurements of radiation and cloud cover, were compared to model outputs from the Eta, ECMWF, GMAO, and RAMS models using the bootstrap statistical technique to ascertain if differences in model performance were statistically significant. Ultimately, three synoptic regimes controlled NSA weather during the MPACE period for varying amounts of time. Each posed a unique challenge to the forecasting models during the study period.

Temperature forecasts for all models were good at the MPACE sites with mean bias errors generally under 2 K, and the models had the fewest significant errors predicting temperature. Forecasting moisture and wind proved to be more difficult for the models, especially aloft in the 500–300-hPa layer. The largest errors occurred in the GMAO model, with significant moist biases of 40% and wind errors of 10 m s−1 or more. The RAMS, Eta, and ECMWF models had smaller moist biases in this layer. Both the Eta and RAMS models overestimated the surface incident shortwave radiation, underestimated longwave radiation, and underestimated cloud cover fraction. Overall, the bootstrapping results coincided with findings from conventional statistical comparisons as model outputs with the largest errors were most likely to be captured and declared statistically significant in the bootstrapping process.

The significant model errors during MPACE were predominantly traced to the inability of the models to simulate disturbances in synoptic regime I, warm or cold biases over higher inland terrain, a warm bias along the NSA coastal waters in the Beaufort Sea, and difficulty in forecasting the intensity of the explosive cyclone in synoptic regime III.

Corresponding author address: Victor Yannuzzi, 3780 30th Ave. South, Apt. 303, Grand Forks, ND 58201. Email: vicyannuzzi@gmail.com

Save