Investigating the Potential of Using Radar Echo Reflectivity to Nowcast Cloud-to-Ground Lightning Initiation over Southern Ontario

Y. Helen Yang Ontario Storm Prediction Centre, Environment Canada, Toronto, Ontario, Canada

Search for other papers by Y. Helen Yang in
Current site
Google Scholar
PubMed
Close
and
Patrick King Meteorological Research Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by Patrick King in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The potential for using radar echo reflectivity to forecast cloud-to-ground (CG) lightning initiation in the 0–1-h time frame was investigated in southern Ontario, Canada. The main purpose of this investigation was to determine a reflectivity threshold at an isothermal altitude and a threshold for echo tops that best predict CG lightning initiation. The study examined lightning, radar, and upper-air sounding data for only airmass-type convection during the summer of 2008. The best predictor of the onset of CG lightning was found to be a 40-dBZ reflectivity level detected at an altitude with an environmental temperature of −10°C, with an average lead time of 17 min. Echo tops reaching or exceeding 7 km were a necessary condition prior to or at the time of the first CG lightning occurrence. Also, certain differences were observed depending on the polarity of the initial lightning flashes. Positive lightning flashes, when compared to negative ones, tended to deliver stronger electric currents and to be farther away from the locations of highest reflectivity on maximum reflectivity (MAXR) radar products. Lead times were observed to be shorter for positive lightning, which might suggest that positive-lightning-producing storm clouds became strongly electrified faster than their negative counterparts. Findings indicate the potential to develop a lightning nowcast algorithm suitable for Canadian forecast operational use.

* Retired

Corresponding author address: Y. Helen Yang, Ontario Storm Prediction Centre, Environment Canada, 4905 Dufferin St., Downsview ON M3H 5T4, Canada. Email: helen.yang3@ec.gc.ca

Abstract

The potential for using radar echo reflectivity to forecast cloud-to-ground (CG) lightning initiation in the 0–1-h time frame was investigated in southern Ontario, Canada. The main purpose of this investigation was to determine a reflectivity threshold at an isothermal altitude and a threshold for echo tops that best predict CG lightning initiation. The study examined lightning, radar, and upper-air sounding data for only airmass-type convection during the summer of 2008. The best predictor of the onset of CG lightning was found to be a 40-dBZ reflectivity level detected at an altitude with an environmental temperature of −10°C, with an average lead time of 17 min. Echo tops reaching or exceeding 7 km were a necessary condition prior to or at the time of the first CG lightning occurrence. Also, certain differences were observed depending on the polarity of the initial lightning flashes. Positive lightning flashes, when compared to negative ones, tended to deliver stronger electric currents and to be farther away from the locations of highest reflectivity on maximum reflectivity (MAXR) radar products. Lead times were observed to be shorter for positive lightning, which might suggest that positive-lightning-producing storm clouds became strongly electrified faster than their negative counterparts. Findings indicate the potential to develop a lightning nowcast algorithm suitable for Canadian forecast operational use.

* Retired

Corresponding author address: Y. Helen Yang, Ontario Storm Prediction Centre, Environment Canada, 4905 Dufferin St., Downsview ON M3H 5T4, Canada. Email: helen.yang3@ec.gc.ca

Save
  • Buechler, D. E., and Goodman S. J. , 1990: Echo size and asymmetry: Impact on NEXRAD storm identification. J. Appl. Meteor., 29 , 962969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, M. A., Andrews C. J. , and Holle R. L. , 2007: Lightning injuries. Wilderness Medicine, P. Auerbach, Ed., Mosby Elsevier, 67–108.

    • Search Google Scholar
    • Export Citation
  • Dalgaard, P., 2008: Introductory Statistics with R. Springer, 363 pp.

  • Dockendorff, D., and Spring K. , cited. 2009: The Canadian Lightning Detection Network—Novel approaches for performance measurement and network management. [Available online at http://www.wmo.ch/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/1(04)_Canada_2_Dockendorff.pdf].

    • Search Google Scholar
    • Export Citation
  • Doswell C. A. III, , 1985: The operational meteorology of convective weather. Vol. II: Storm scale analysis. NOAA Tech. Memo. ERL ESG-15, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 1986: Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res., 91 , 12311247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., Winn W. P. , Jones J. J. , and Breed D. W. , 1989: The electrification of New Mexico thunderstorms. Part 1: Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94 , 86438656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and Orville R. E. , 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14 , 640649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hondl, K. D., and Eilts M. D. , 1994: Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Wea. Rev., 122 , 18181836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., Saunders C. P. R. , and Hallett J. , 1983: Laboratory studies of the charging of soft hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109 , 609630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., Falla M. , Van Rijn P. , Stamadianos L. , Falla T. , Magosse D. , Ing L. , and Dobson J. , 2002: Radar data processing for severe weather in the National Radar Project of Canada. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., P4.13. [Available online at http://ams.confex.com/ams/pdfpapers/47421.pdf].

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., Cooper W. A. , Breed D. W. , Paluch I. R. , Smith P. L. , and Vali G. , 1982: Microphysics. Hailstorms of the Central High Plains. Volume I: The National Hail Research Experiment, C. A. Knight and P. Squires, Eds., Colorado Associated University Press, 151–193.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academies Press, 90–113.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., Brook M. , Khanna-Gupta S. , Lennon C. L. , and Lhermitte R. , 1984: Some results concerning VHF lightning radiation from the real-time LDAR system at KSC, Florida. Proc. VIIth Int. Conf. on Atmospheric Electricity, Boston, MA, Amer. Meteor. Soc., 388–393.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and Stumpf G. J. , 2005: A real-time learning technique to predict cloud-to-ground lightning. Preprints, Fourth Conf. on Artificial Intelligence Applications to Environmental Science/21st Int. Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., J5.6. [Available online at http://ams.confex.com/ams/pdfpapers/87206.pdf].

    • Search Google Scholar
    • Export Citation
  • Larsen, H. R., and Stansbury E. J. , 1974: Association of lightning flashes with precipitation cores extending to height 7 km. J. Atmos. Terr. Phys., 36 , 15471553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Rust W. D. , 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89 , 9971013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maekawa, Y., Fukao S. , Sonoi Y. , and Yoshino F. , 1992: Dual polarization radar observations of anomalous wintertime thunderclouds in Japan. IEEE Trans. Geosci. Remote Sens., 30 , 838844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Radhakant S. , 1978: Radar precipitation maps as lightning indicators. J. Appl. Meteor., 17 , 206212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michimoto, K., 1991: A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku district. Part I: Observations and analysis of thunderclouds in summer and winter. J. Meteor. Soc. Japan, 69 , 327335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michimoto, K., 1993: A study of radar echoes and their relation to lightning discharges of thunderclouds in the Hokuriku district. Part II: Observation and analysis of “single-flash” thunderclouds in midwinter. J. Meteor. Soc. Japan, 71 , 195204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, B., Unrau D. , Parkinson C. , Jones B. , Yessis J. , Spring K. , and Pentelow L. , 2008: Assessment of lightning-related fatality and injury risk in Canada. Nat. Hazards, 47 , 157183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., Huffines G. R. , Burrows W. R. , Holle R. L. , and Cummins K. L. , 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130 , 20982109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereyra, R. G., Bürgesser R. E. , and Ávila E. E. , 2008: Charge separation in thunderstorm conditions. J. Geophys. Res., 113 , D17203. doi:10.1029/2007JD009720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., Brook M. , and Gourley M. F. , 1957: Thunderstorm charge separation. J. Meteor., 14 , 426436.

  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76 , 247271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., Bax-Norman H. , Emersic C. , Avila E. E. , and Castellano N. E. , 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132 , 26532673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanski, H. R., Wilson L. J. , and Burrows W. R. , cited. 2009: Survey of common verification methods in meteorology. World Weather Watch Tech. Rep. 8, WMO/TD 358. [Available online at http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/Stanski_et_al/Stanski_et_al.html].

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1984: Thunderstorms electrification—A numerical study. J. Atmos. Sci., 41 , 25412558.

  • Takahashi, T., and Miyawaki K. , 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59 , 10181025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomine, K., Michimoto K. , and Abe S. , 1986: Studies on thunderstorm in winter in the area surrounding Komatsu by radar (in Japanese). Tenki, 33 , 445452.

    • Search Google Scholar
    • Export Citation
  • Vincent, B. R., Carey L. D. , Schneider D. , Keeter K. , and Gonski R. , 2004: Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Wea. Dig., 27 , 3544.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Hobbs P. V. , 1977: Atmospheric Science. An Introductory Survey. Academic Press, 467 pp.

  • Wolf, P., 2007: Anticipating the initiation, cessation, and frequency of cloud-to-ground lightning, utilizing WSR-88D reflectivity data. Electron. J. Oper. Meteor., 2007-EJ1. [Available online at http://www.nwas.org/ej/2007-EJ1].

    • Search Google Scholar
    • Export Citation
  • Yeung, L. H. Y., Lai E. S. T. , and Chiu S. K. S. , 2007: Lightning initiation and intensity nowcasting based on isothermal radar reflectivity—A conceptual model. Preprints, 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., 11A.7. [Available online at http://ams.confex.com/ams/pdfpapers/123157.pdf].

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Lutz K. R. , 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 17511759.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 756 280 73
PDF Downloads 482 108 2