Convection-Allowing and Convection-Parameterizing Ensemble Forecasts of a Mesoscale Convective Vortex and Associated Severe Weather Environment

Adam J. Clark Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
,
William A. Gallus Jr. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by William A. Gallus Jr. in
Current site
Google Scholar
PubMed
Close
,
Ming Xue School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
, and
Fanyou Kong Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Fanyou Kong in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An analysis of a regional severe weather outbreak that was related to a mesoscale convective vortex (MCV) is performed. The MCV-spawning mesoscale convection system (MCS) formed in northwest Kansas along the southern periphery of a large cutoff 500-hPa low centered over western South Dakota. As the MCS propagated into eastern Kansas during the early morning of 1 June 2007, an MCV that became evident from multiple data sources [e.g., Weather Surveillance Radar-1988 Doppler (WSR-88D) network, visible satellite imagery, wind-profiler data, Rapid Update Cycle 1-hourly analyses] tracked through northwest Missouri and central Iowa and manifested itself as a well-defined midlevel short-wave trough. Downstream of the MCV in southeast Iowa and northwest Illinois, southwesterly 500-hPa winds increased to around 25 m s−1 over an area with southeasterly surface winds and 500–1500 J kg−1 of surface-based convective available potential energy (CAPE), creating a favorable environment for severe weather. In the favorable region, multiple tornadoes occurred, including one rated as a category 3 storm on the enhanced Fujita scale (EF3) that caused considerable damage. In the analysis, emphasis is placed on the role of the MCV in leading to a favorable environment for severe weather. In addition, convection-allowing forecasts of the MCV and associated environmental conditions from the 10-member Storm-Scale Ensemble Forecast (SSEF) system produced for the 2007 NOAA Hazardous Weather Testbed Spring Experiment are compared to those from a similarly configured, but coarser, 30-member convection-parameterizing ensemble. It was found that forecasts of the MCV track and associated environmental conditions (e.g., midlevel winds, low-level wind shear, and instability) were much better in the convection-allowing ensemble. Errors in the MCV track from convection-parameterizing members likely resulted from westward displacement errors in the incipient MCS. Furthermore, poor depiction of MCV structure and maintenance in convection-parameterizing members, which was diagnosed through a vorticity budget analysis, likely led to the relatively poor forecasts of the associated environmental conditions. The results appear to be very encouraging for convection-allowing ensembles, especially when environmental conditions lead to a high degree of predictability for MCSs, which appeared to be the case for this particular event.

Corresponding author address: Adam J. Clark, National Weather Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072. Email: adam.clark@noaa.gov

Abstract

An analysis of a regional severe weather outbreak that was related to a mesoscale convective vortex (MCV) is performed. The MCV-spawning mesoscale convection system (MCS) formed in northwest Kansas along the southern periphery of a large cutoff 500-hPa low centered over western South Dakota. As the MCS propagated into eastern Kansas during the early morning of 1 June 2007, an MCV that became evident from multiple data sources [e.g., Weather Surveillance Radar-1988 Doppler (WSR-88D) network, visible satellite imagery, wind-profiler data, Rapid Update Cycle 1-hourly analyses] tracked through northwest Missouri and central Iowa and manifested itself as a well-defined midlevel short-wave trough. Downstream of the MCV in southeast Iowa and northwest Illinois, southwesterly 500-hPa winds increased to around 25 m s−1 over an area with southeasterly surface winds and 500–1500 J kg−1 of surface-based convective available potential energy (CAPE), creating a favorable environment for severe weather. In the favorable region, multiple tornadoes occurred, including one rated as a category 3 storm on the enhanced Fujita scale (EF3) that caused considerable damage. In the analysis, emphasis is placed on the role of the MCV in leading to a favorable environment for severe weather. In addition, convection-allowing forecasts of the MCV and associated environmental conditions from the 10-member Storm-Scale Ensemble Forecast (SSEF) system produced for the 2007 NOAA Hazardous Weather Testbed Spring Experiment are compared to those from a similarly configured, but coarser, 30-member convection-parameterizing ensemble. It was found that forecasts of the MCV track and associated environmental conditions (e.g., midlevel winds, low-level wind shear, and instability) were much better in the convection-allowing ensemble. Errors in the MCV track from convection-parameterizing members likely resulted from westward displacement errors in the incipient MCS. Furthermore, poor depiction of MCV structure and maintenance in convection-parameterizing members, which was diagnosed through a vorticity budget analysis, likely led to the relatively poor forecasts of the associated environmental conditions. The results appear to be very encouraging for convection-allowing ensembles, especially when environmental conditions lead to a high degree of predictability for MCSs, which appeared to be the case for this particular event.

Corresponding author address: Adam J. Clark, National Weather Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072. Email: adam.clark@noaa.gov

Save
  • Baldwin, M. E., Kain J. S. , and Kay M. P. , 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17 , 10631079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., and Maddox R. A. , 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119 , 104118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., Brown J. M. , and Tollerud E. I. , 1997: Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev., 125 , 193211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Grell G. A. , Brown J. M. , Smirnova T. G. , and Bleck R. , 2004a: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132 , 473494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004b: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and Sanders F. , 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38 , 16161642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., Hollingsworth A. , Lalaurette F. , and Ghelli A. , 1999: Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Wea. Forecasting, 14 , 168189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., Kain J. S. , and Baldwin M. E. , 2006: Bowing convective systems in a popular operational model: Are they for real? Wea. Forecasting, 21 , 307324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and Suarez M. J. , 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T. C. , 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135 , 34563473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24 , 11211140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. , Xue M. , and Kong F. , 2010: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25 , 594612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Elmore K. L. , Kain J. S. , Weiss S. J. , Xue M. , and Weisman M. L. , 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25 , 408427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., Moore R. W. , Montgomery M. T. , and Davis C. A. , 2007: Mesoscale convective vortex formation in a weakly sheared moist neutral environment. J. Atmos. Sci., 64 , 14431466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Correia J. Jr., , Gallus W. A. Jr., Jankov I. , and Arritt R. W. , 2004: Convective contamination of model initializations and the poor forecasts that follow. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.8.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Weisman M. L. , 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51 , 20052030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Trier S. B. , 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130 , 28392858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Trier S. B. , 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135 , 20292049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Galarneau T. J. , 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66 , 686704.

  • Davis, C. A., Ahijevych D. A. , and Trier S. B. , 2002: Detection and prediction of warm season midtropospheric vortices by the Rapid Update Cycle. Mon. Wea. Rev., 130 , 2442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Manning K. W. , Carbone R. E. , Trier S. B. , and Tuttle J. D. , 2003: Coherence of warm season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85 , 10751093.

  • Davis, C. A., Brown B. , and Bullock R. , 2006: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134 , 17851795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. A. , and Weisman M. L. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5 , 110117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell C. A. III, , and Rasmussen E. N. , 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and Coauthors, 2004: The NOAA/NWS/NCEP Short Range Ensemble Forecast (SREF) system: Evaluation of an initial condition vs multiple model physics ensemble approach. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 21.3.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and Hicks B. B. , 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96 , 715721.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah Land Surface Model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Jin Y. , Lin Y. , Black T. , Rogers E. , and DiMego G. , 2002: Implementation of a new grid-scale cloud and rainfall scheme in the NCEP Eta Model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Kane R. , and Chelius C. , 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Appl. Meteor., 25 , 13331345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Murphy J. D. , and Kain J. S. , 1994: Warm-core vortex amplification over land. J. Atmos. Sci., 51 , 17801807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Bosart L. F. , Davis C. A. , and McTaggart-Cowan R. , 2009: Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev., 137 , 562584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., Zawadzki I. , and Turner B. , 2006: Predictability of precipitation from continental radar images. Part IV: Limits to prediction. J. Atmos. Sci., 63 , 20922108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, L. O., Hammond K. R. , Lusk C. M. , and Mross E. F. , 1992: The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120 , 863883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawblitzel, D. P., Zhang F. , Meng Z. , and Davis C. A. , 2007: Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10–13 June 2003. Mon. Wea. Rev., 135 , 15441563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Schär C. , 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88 , 17831793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and Lim J-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Kor. Meteor. Soc., 42 , 129151.

  • James, E. P., and Johnson R. H. , 2010: A climatology of midlatitude mesoscale convective vortices in the Rapid Update Cycle. Mon. Wea. Rev., 138 , 19401956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Amer. Meteor. Soc., Norfolk, VA, 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82 , 271285.

  • Johnson, R. H., and Mapes B. E. , 2001: Mesoscale processes and severe convective weather. C. Severe Convective Weather, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 71–122.

    • Search Google Scholar
    • Export Citation
  • Johnston, E. C., 1982: Mesoscale vorticity centers induced by mesoscale convective complexes. Preprints, Ninth Conf. on Weather Forecasting and Analysis, Seattle, WA, Amer. Meteor. Soc., 196–200.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparison of coarse and fine-grid experiments. Mon. Wea. Rev., 134 , 807833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2007a: Multi-resolution ensemble forecasts of an observed tornadic thunderstorm system. Part II. Storm-scale experiments. Mon. Wea. Rev., 135 , 759782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2007b: Preliminary analysis on the real-time storm-scale ensemble forecasts produced as a part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.2.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at http://ams.confex.com/ams/pdfpapers/154118.pdf].

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116 , 779797.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

  • Menard, R. D., and Fritsch J. , 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117 , 12371261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 151 , 163187.

    • Search Google Scholar
    • Export Citation
  • Mylne, K. R., 1999: The use of forecast value calculations for optimal decision making using probability forecasts. Preprints, 17th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 235–239.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Cheon W. G. , Hong S-Y. , and Raasch S. , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Jiang H. , 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47 , 30673077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Applications of cost–loss models. Proc. Seventh ECMWF Workshop on Meteorological Operational Systems, Reading, United Kingdom, ECMWF, 209–213.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127 , 24732489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, G. D., 1967: Some current projects for global meteorological observation and experiment. Quart. J. Roy. Meteor. Soc., 93 , 409418.

  • Rogers, R. F., and Fritsch J. M. , 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129 , 605637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21 , 6985.

  • Schumacher, R. S., and Johnson R. H. , 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24 , 555574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25 , 263280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Weisman M. L. , and Klemp J. B. , 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51 , 25632584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN–468+STR, 88 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307; also available online at http://box.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf].

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull. Amer. Meteor. Soc., 50 , 286311.

  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Trier, S. B., and Davis C. A. , 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130 , 877899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , and Tuttle J. D. , 2000a: Long-lived mesoconvective vortices and their environment. Part I: Observations from the central United States during the 1998 warm season. Mon. Wea. Rev., 128 , 33763395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , and Skamarock W. C. , 2000b: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128 , 33963412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M., Stensrud D. J. , Mullen S. L. , and Wicker L. J. , 2008: On the predictability of mesoscale convective systems: Two-dimensional simulations. Wea. Forecasting, 23 , 773785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96 , 6790.

  • Weisman, M. L., and Davis C. A. , 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55 , 26032622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23 , 407437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.1. [Available online at http://ams.confex.com/ams/pdfpapers/124587.pdf].

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2009: CAPS realtime multi-model convection-allowing ensemble and 1-km convection-resolving forecasts for the NOAA Hazardous Weather Testbed 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.2. [Available online at http://ams.confex.com/ams/pdfpapers/154323.pdf].

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., 1992: The formation of a cooling induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120 , 27632785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and Fritsch J. M. , 1987: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown Flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex. J. Atmos. Sci., 44 , 25932612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Odins A. M. , and Nielsen-Gammon J. W. , 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21 , 149166.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 696 380 98
PDF Downloads 282 79 7