NAM Model Forecasts of Warm-Season Quasi-Stationary Frontal Environments in the Central United States

Shih-Yu Wang Utah Climate Center, Utah State University, Logan, Utah

Search for other papers by Shih-Yu Wang in
Current site
Google Scholar
PubMed
Close
and
Adam J. Clark National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Using a composite procedure, North American Mesoscale Model (NAM) forecast and observed environments associated with zonally oriented, quasi-stationary surface fronts for 64 cases during July–August 2006–08 were examined for a large region encompassing the central United States. NAM adequately simulated the general synoptic features associated with the frontal environments (e.g., patterns in the low-level wind fields) as well as the positions of the fronts. However, kinematic fields important to frontogenesis such as horizontal deformation and convergence were overpredicted. Surface-based convective available potential energy (CAPE) and precipitable water were also overpredicted, which was likely related to the overprediction of the kinematic fields through convergence of water vapor flux. In addition, a spurious coherence between forecast deformation and precipitation was found using spatial correlation coefficients. Composite precipitation forecasts featured a broad area of rainfall stretched parallel to the composite front, whereas the composite observed precipitation covered a smaller area and had a WNW–ESE orientation relative to the front, consistent with mesoscale convective systems (MCSs) propagating at a slight right angle relative to the thermal gradient. Thus, deficiencies in the NAM precipitation forecasts may at least partially result from the inability to depict MCSs properly. It was observed that errors in the precipitation forecasts appeared to lag those of the kinematic fields, and so it seems likely that deficiencies in the precipitation forecasts are related to the overprediction of the kinematic fields such as deformation. However, no attempts were made to establish whether the overpredicted kinematic fields actually contributed to the errors in the precipitation forecasts or whether the overpredicted kinematic fields were simply an artifact of the precipitation errors. Regardless of the relationship between such errors, recognition of typical warm-season environments associated with these errors should be useful to operational forecasters.

Corresponding author address: Shih-Yu (Simon) Wang, Utah Climate Center, Utah State University, 4825 Old Main Hill, Logan, UT 84322-4825. Email: simon.wang@usu.edu

Abstract

Using a composite procedure, North American Mesoscale Model (NAM) forecast and observed environments associated with zonally oriented, quasi-stationary surface fronts for 64 cases during July–August 2006–08 were examined for a large region encompassing the central United States. NAM adequately simulated the general synoptic features associated with the frontal environments (e.g., patterns in the low-level wind fields) as well as the positions of the fronts. However, kinematic fields important to frontogenesis such as horizontal deformation and convergence were overpredicted. Surface-based convective available potential energy (CAPE) and precipitable water were also overpredicted, which was likely related to the overprediction of the kinematic fields through convergence of water vapor flux. In addition, a spurious coherence between forecast deformation and precipitation was found using spatial correlation coefficients. Composite precipitation forecasts featured a broad area of rainfall stretched parallel to the composite front, whereas the composite observed precipitation covered a smaller area and had a WNW–ESE orientation relative to the front, consistent with mesoscale convective systems (MCSs) propagating at a slight right angle relative to the thermal gradient. Thus, deficiencies in the NAM precipitation forecasts may at least partially result from the inability to depict MCSs properly. It was observed that errors in the precipitation forecasts appeared to lag those of the kinematic fields, and so it seems likely that deficiencies in the precipitation forecasts are related to the overprediction of the kinematic fields such as deformation. However, no attempts were made to establish whether the overpredicted kinematic fields actually contributed to the errors in the precipitation forecasts or whether the overpredicted kinematic fields were simply an artifact of the precipitation errors. Regardless of the relationship between such errors, recognition of typical warm-season environments associated with these errors should be useful to operational forecasters.

Corresponding author address: Shih-Yu (Simon) Wang, Utah Climate Center, Utah State University, 4825 Old Main Hill, Logan, UT 84322-4825. Email: simon.wang@usu.edu

Save
  • Accadia, C., Mariani S. , Casaioli M. , Lavagnini A. , and Speranza A. , 2003: Sensitivity of precipitation forecast skill scores to bilinear and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18 , 918932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., Kain J. S. , and Kay M. P. , 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17 , 10631079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single-column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., Kain J. S. , and Baldwin M. E. , 2006: Bowing convective systems in a popular operational model: Are they for real? Wea. Forecasting, 21 , 307324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T-C. , 2007: Comparison of the diurnal precipitation cycle in convective-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135 , 34563473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24 , 11211140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and Stensrud D. J. , 2001: Simulation of a progressive derecho using composite initial conditions. Mon. Wea. Rev., 129 , 15931616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Stensrud D. J. , and Richman M. B. , 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19 , 320337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Elmore K. L. , Kain J. S. , Weiss S. J. , Xue M. , and Weisman M. , 2009: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25 , 408427.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Manning K. W. , Carbone R. E. , Trier S. B. , and Tuttle J. D. , 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and Coauthors, 2004: The NOAA/NWS/NCEP Short Range Ensemble Forecast (SREF) system: Evaluation of an initial condition vs multiple model physics ensemble approach. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 21.3. [Available online at http://ams.confex.com/ams/pdfpapers/71107.pdf].

    • Search Google Scholar
    • Export Citation
  • Endlich, R. M., 1967: An iterative method for altering the kinematic properties of wind fields. J. Appl. Meteor., 6 , 837844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Jin Y. , Lin Y. , Black T. , Rogers E. , and DiMego G. , 2002: Implementation of a new grid-scale cloud and rainfall scheme in the NCEP Eta Model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Kane R. , and Chelius C. , 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Appl. Meteor., 25 , 13331345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanstrum, B., Wilson K. , and Barrell S. , 1990: Prefrontal troughs over southern Australia. Part II: A case study of frontogenesis. Wea. Forecasting, 5 , 3246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , Yarosh E. S. , Janowiak J. E. , and Mo K. C. , 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10 , 481507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Schar C. , 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88 , 17831793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso-model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82 , 271285.

  • Johns, R. H., 1984: A synoptic climatology of northwest flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112 , 449464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8 , 294299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Hirt W. D. , 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2 , 3249.

  • Juang, H. M-H., 1991: Numerical simulations of the evolution of a cold front and its precipitation. Mon. Wea. Rev., 119 , 385411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., and Johnson R. H. , 2002: The kinematics of a midlatitude, continental mesoscale convective system and its mesoscale vortex. Mon. Wea. Rev., 130 , 17491770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., Droegemeier K. K. , and Hickmon N. L. , 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparison of coarse and fine-grid experiments. Mon. Wea. Rev., 134 , 807833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf].

    • Search Google Scholar
    • Export Citation
  • Liu, C., Moncrieff M. W. , Tuttle J. D. , and Carbone R. E. , 2006: Explicit and parameterized episodes of warm-season precipitation over the continental United States. Adv. Atmos. Sci., 23 , 91105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., Ed. 2006: The vertical circulation at fronts. Mid-Latitude Atmospheric Dynamics: A First Course, John Wiley and Sons, 187–234.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

  • Molinari, J., and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5 , 570575.

  • Schmidt, J. M., and Cotton W. R. , 1989: A high plains squall line associated with severe surface winds. J. Atmos. Sci., 46 , 281302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., Garratt J. , Kallos G. , and Pielke R. , 1989: The impact of wet soil and canopy temperatures on daytime boundary-layer growth. J. Atmos. Sci., 46 , 36733684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and Augustine J. A. , 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev., 121 , 103132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and Davis C. A. , 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134 , 22972317.

  • Walser, A., Lüthi D. , and Schär C. , 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132 , 560577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S-Y., and Chen T-C. , 2009: The late spring maximum of rainfall over the United States central plains and the role of the low-level jet. J. Climate, 22 , 46964709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S-Y., Chen T-C. , and Taylor S. E. , 2009: Evaluations of NAM forecasts on midtropospheric perturbation-induced convective storms over the U.S. northern plains. Wea. Forecasting, 24 , 13091333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S-Y., Chen T-C. , and Correia J. Jr., 2010: Climatology of summer midtropospheric perturbations in the U.S. northern plains. Part I: Influence on northwest flow severe weather outbreaks. Climate Dyn., doi:10.1007/s00382-009-0696-3, in press.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, R. A., 1990: An observational study of warm season southern Appalachian lee troughs. Part II: Thunderstorm genesis zones. Mon. Wea. Rev., 118 , 20202041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 836 473 138
PDF Downloads 187 70 5