Some Implications of Core Regime Wind Structures in Western North Pacific Tropical Cyclones

Delia Yen-Chu Chen Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Delia Yen-Chu Chen in
Current site
Google Scholar
PubMed
Close
,
Kevin K. W. Cheung Department of Environment and Geography, and Climate Futures Research Centre, Macquarie University, Sydney, New South Wales, Australia

Search for other papers by Kevin K. W. Cheung in
Current site
Google Scholar
PubMed
Close
, and
Cheng-Shang Lee Department of Atmospheric Sciences, National Taiwan University, and Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories, Taipei, Taiwan

Search for other papers by Cheng-Shang Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a tropical cyclone (TC) is considered to be compact if 1) the radius of maximum wind or the maximum tangential wind is smaller than what would be expected for an average tropical cyclone of the same intensity or the same radius of maximum wind, and 2) the decrease of tangential wind outside the radius of maximum wind is greater than that of an average TC. A structure parameter S is defined to provide a quantitative measure of the compactness of tropical cyclones. Quick Scatterometer (QuikSCAT) oceanic winds are used to calculate S for 171 tropical cyclones during 2000–07. The S parameters are then used to classify all of the cases as either compact or incompact according to the 33% and 67% percentiles. It is found that the early intensification stage is favorable for the occurrence of compact tropical cyclones, which also have a higher percentage of rapid intensification than incompact cases. Composite infrared brightness temperature shows that compact tropical cyclones have highly axisymmetric convective structures with strong convection concentrated in a small region near the center. Low-level synoptic patterns are important environmental factors that determine the degree of compactness; however, it is believed that compact tropical cyclones maintain their structures mainly through internal dynamics.

Corresponding author address: Cheng-Shang Lee, Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan. Email: cslee@ntu.edu.tw

Abstract

In this study, a tropical cyclone (TC) is considered to be compact if 1) the radius of maximum wind or the maximum tangential wind is smaller than what would be expected for an average tropical cyclone of the same intensity or the same radius of maximum wind, and 2) the decrease of tangential wind outside the radius of maximum wind is greater than that of an average TC. A structure parameter S is defined to provide a quantitative measure of the compactness of tropical cyclones. Quick Scatterometer (QuikSCAT) oceanic winds are used to calculate S for 171 tropical cyclones during 2000–07. The S parameters are then used to classify all of the cases as either compact or incompact according to the 33% and 67% percentiles. It is found that the early intensification stage is favorable for the occurrence of compact tropical cyclones, which also have a higher percentage of rapid intensification than incompact cases. Composite infrared brightness temperature shows that compact tropical cyclones have highly axisymmetric convective structures with strong convection concentrated in a small region near the center. Low-level synoptic patterns are important environmental factors that determine the degree of compactness; however, it is believed that compact tropical cyclones maintain their structures mainly through internal dynamics.

Corresponding author address: Cheng-Shang Lee, Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan. Email: cslee@ntu.edu.tw

Save
  • Bender, M. A., and Ginis I. , 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., and Willoughby H. E. , 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120 , 947957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S-A., Hoffman R. N. , Grassotti C. , and Leidner S. M. , 2002: Physically based modeling of QSCAT SeaWinds passive microwave measurements for rain detection. J. Geophys. Res., 107 , 4786. doi:10.1029/2001JD001243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., Legler D. M. , O’Brien J. J. , and Smith S. R. , 2003: SeaWinds validation with research vessels. J. Geophys. Res., 108 , 30193034.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1972: Very large and very small typhoons of the western North Pacific Ocean. J. Meteor. Soc. Japan, 50 , 332341.

  • Brennan, M. J., Hennon C. C. , and Knabb R. D. , 2009: The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Wea. Forecasting, 24 , 621645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr L. E. III, , and Elsberry R. L. , 1997: Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon. Wea. Rev., 125 , 31903209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Challa, M., and Pfeffer R. L. , 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37 , 16031618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C-L., and Williams R. T. , 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44 , 12571265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., and Elsberry R. L. , 2002: Tropical cyclone formations over the western North Pacific in the Navy Operational Global Atmospheric Prediction System Forecasts. Wea. Forecasting, 17 , 800820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and Gray W. M. , 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130 , 19892005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croxford, M., and Barnes G. M. , 2002: Inner core strength of Atlantic tropical cyclones. Mon. Wea. Rev., 130 , 127139.

  • Cubukcu, N., Pfeffer R. L. , and Dietrich D. E. , 2000: Simulation of the effects of bathymetry and land–sea contrasts on hurricane development using a coupled ocean–atmosphere model. J. Atmos. Sci., 57 , 481492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762087.

  • DeMaria, M., and Kaplan J. , 1994a: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9 , 209220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1994b: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7 , 13241334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., Graber H. C. , and Caruso M. J. , 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19 , 20492062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of tropical cyclones. J. Atmos. Sci., 45 , 11431155.

  • Emanuel, K. A., DesAutels C. , Holloway C. , and Korty R. , 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61 , 843858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, P. J., 1997: Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Wea. Forecasting, 12 , 826845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and Gray W. M. , 1980: Radius and frequency of 15 m s−1 (30 kt) winds around tropical cyclones. J. Appl. Meteor., 19 , 219223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and Ritchie E. A. , 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guard, C. P., Carr L. E. , Wells F. H. , Jeffries R. A. , Gural N. D. , and Edson D. K. , 1992: Joint Typhoon Warning Center and the challenges of multibasin tropical cyclone forecasting. Wea. Forecasting, 7 , 328352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and Schubert W. H. , 1993: Hurricane spiral bands. J. Atmos. Sci., 50 , 33803404.

  • Hill, K. A., and Lackmann G. M. , 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137 , 32943315.

  • Holland, G. J., 1983: Angular momentum transports in tropical cyclones. Quart. J. Roy. Meteor. Soc., 109 , 187210.

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Holland, G. J., and Merrill R. T. , 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110 , 723745.

  • Knaff, J. A., and Zehr R. M. , 2007: Reexamination of tropical cyclone pressure wind relationships. Wea. Forecasting, 22 , 7188.

  • Knaff, J. A., Kossin J. P. , and DeMaria M. , 2003: Annular hurricanes. Wea. Forecasting, 18 , 204223.

  • Knaff, J. A., Seseske S. A. , DeMaria M. , and Demuth J. L. , 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132 , 25032510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Sampson C. R. , and DeMaria M. , 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20 , 688699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Cram T. A. , Schumacher A. B. , Kossin J. P. , and DeMaria M. , 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23 , 1728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Brown D. P. , Courtney J. , Gallina G. M. , and Beven J. L. II, 2010: An evaluation of Dvorak technique-based tropical cyclone intensity estimates. Wea. Forecasting, 25 , 13621379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Eastin M. D. , 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., Knaff J. A. , Berger H. I. , Herndon D. C. , Cram T. A. , Velden C. S. , Murnane R. J. , and Hawkins J. D. , 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22 , 89101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krayer, W. R., and Marshall R. D. , 1992: Gust factors applied to hurricane winds. Bull. Amer. Meteor. Soc., 73 , 613617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., Chang C-P. , Yang Y-T. , and Jiang H-J. , 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137 , 37583770.

  • Lee, C-S., Cheung K. K. W. , Fang W-T. , and Elsberry R. L. , 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138 , 32073223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I-I., Wu C-C. , Emanuel K. , Lee I-H. , Wu C-R. , and Pun I-F. , 2005: The interaction of Super Typhoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133 , 26352649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I-I., Wu C-C. , Pun I-F. , and Ko D-S. , 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136 , 32883306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and Chan J. C. L. , 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127 , 29923001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., DeMaria M. , and Harr T. H. V. , 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136 , 48824898.

  • Mainelli, M., DeMaria M. , Shay L. K. , and Goni G. , 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23 , 316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112 , 14081418.

  • Mueller, K. J., DeMaria M. , Knaff J. , Kossin J. P. , and Harr T. H. V. , 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21 , 9901005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundell, D. B., 1990: Prediction of tropical cyclone rapid intensification events. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 186 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523].

  • Pickett, M. H., Tang W. , Rosenfeld L. K. , and Wash C. H. , 2003: QuikSCAT satellite comparison with nearshore buoy wind data off the U.S. West Coast. J. Atmos. Oceanic Technol., 20 , 18691879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M., and Reinhold T. , 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88 , 513526.

  • Sampson, C. R., Jeffries R. A. , Neumann C. J. , and Chu J-H. , 1995: Tropical cyclone intensity. Tropical Cyclone Forecasters’ Reference Guide, NRL Rep. NRL/PU/7541–95-0012, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., 2000: Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci., 57 , 31223130.

  • Schubert, W. H., Montgomery M. T. , Taft R. K. , Guinn T. A. , Fulton S. R. , Kossin J. P. , and Edwards J. P. , 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, N., and D’Sa E. , 2008: Assessment and analysis of QuikSCAT vector wind products for the Gulf of Mexico: A long-term and hurricane analysis. Sensors, 8 , 19271949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: What controls tropical cyclone size and intensity. IPRC Climate, Vol. 8, No. 2, International Pacific Research Center, 3–5.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C., and Gray W. M. , 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., Bourassa M. A. , and Tongue J. , 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19 , 738746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C-C., Lee C-Y. , and Lin I-I. , 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64 , 35623578.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 365 171 16
PDF Downloads 183 53 0