Effects of Surface Heat and Moisture Exchange on ARW-WRF Warm-Season Precipitation Forecasts over the Central United States

S. B. Trier National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by S. B. Trier in
Current site
Google Scholar
PubMed
Close
,
M. A. LeMone National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by M. A. LeMone in
Current site
Google Scholar
PubMed
Close
,
F. Chen National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by F. Chen in
Current site
Google Scholar
PubMed
Close
, and
K. W. Manning National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by K. W. Manning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution of the daytime planetary boundary layer (PBL) and its association with warm-season precipitation is strongly impacted by land–atmosphere heat and moisture exchange (hereafter surface exchange). However, substantial uncertainty exists in the parameterization of the surface exchange in numerical weather prediction (NWP) models. In the current study, the authors examine 0–24-h convection-permitting forecasts with different surface exchange strengths for a 6-day period during the International H2O Project (IHOP_2002). Results indicate sensitivity in the timing of simulated afternoon convection initiation and subsequent precipitation amounts to variations in surface exchange strength. Convection initiation in simulations with weak surface exchange was delayed by 2–3 h compared to simulations with strong surface exchange, and area-averaged total precipitation amounts were less by up to a factor of 2. Over the western high plains (105°–100°W longitude), where deep convection is locally generated, simulations using a formulation for surface exchange that varied with the vegetation category (height) produced area-averaged diurnal cycles of forecasted precipitation amounts in better agreement with observations than simulations that used the current Advanced Research Weather Research and Forecasting Model (ARW-WRF) formulation. Parcel theory is used to diagnose mechanisms by which differences in surface exchange influence convection initiation in individual case studies. The more rapid initiation in simulations with strong surface exchange results from a more rapid removal of negative buoyancy beneath the level of free convection, which arises primarily from greater PBL warming.

Corresponding author address: Stanley B. Trier, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: trier@ucar.edu

Abstract

The evolution of the daytime planetary boundary layer (PBL) and its association with warm-season precipitation is strongly impacted by land–atmosphere heat and moisture exchange (hereafter surface exchange). However, substantial uncertainty exists in the parameterization of the surface exchange in numerical weather prediction (NWP) models. In the current study, the authors examine 0–24-h convection-permitting forecasts with different surface exchange strengths for a 6-day period during the International H2O Project (IHOP_2002). Results indicate sensitivity in the timing of simulated afternoon convection initiation and subsequent precipitation amounts to variations in surface exchange strength. Convection initiation in simulations with weak surface exchange was delayed by 2–3 h compared to simulations with strong surface exchange, and area-averaged total precipitation amounts were less by up to a factor of 2. Over the western high plains (105°–100°W longitude), where deep convection is locally generated, simulations using a formulation for surface exchange that varied with the vegetation category (height) produced area-averaged diurnal cycles of forecasted precipitation amounts in better agreement with observations than simulations that used the current Advanced Research Weather Research and Forecasting Model (ARW-WRF) formulation. Parcel theory is used to diagnose mechanisms by which differences in surface exchange influence convection initiation in individual case studies. The more rapid initiation in simulations with strong surface exchange results from a more rapid removal of negative buoyancy beneath the level of free convection, which arises primarily from greater PBL warming.

Corresponding author address: Stanley B. Trier, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: trier@ucar.edu

Save
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121 , 255270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. B., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Bennett, L. J., Weckwerth T. M. , Blyth A. M. , Geerts B. , Miao Q. , and Richardson Y. P. , 2010: Observations of the evolution of the nocturnal and convective boundary layers and the structure of open-celled convection on 14 June 2002. Mon. Wea. Rev., 138 , 25892607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100 , 2567925693.

  • Brutsaert, W. A., 1982: Evaporation into the Atmosphere. Reidel, 299 pp.

  • Cai, H., Lee W-C. , Weckwerth T. M. , Flamant C. , and Murphey H. V. , 2006: Observations of the 11 June dryline during IHOP_2002 A null case for convection initiation. Mon. Wea. Rev., 134 , 336354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Zhang Y. , 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36 , L10404. doi:10.1029/2009GL037980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Janjic Z. I. , and Mitchell K. E. , 1997: Impact of atmospheric surface layer parameterization in the new land surface scheme of the NCEP mesoscale Eta numerical model. Bound.-Layer Meteor., 85 , 391421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Evaluation of the characteristics of the NCAR high-resolution land data assimilation system during IHOP_2002. J. Appl. Meteor. Climatol., 46 , 694713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., Guichard F. , Austin P. H. , and Chen F. , 2009: Nature of the mesoscale boundary layer height and water vapor variability observed on 14 June 2002 during the IHOP_2002 campaign. Mon. Wea. Rev., 137 , 414432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: The sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. A. , and Weisman M. L. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5 , 110117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grummann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D-J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1997: Satellite-derived green vegetation fraction for the use in numerical weather prediction models. Adv. Space Res., 19 , 477480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, T. R., Niyogi D. , Chen F. , Manning K. W. , LeMone M. A. , and Qureshi A. , 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134 , 113133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 , 23182341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, K. A., Stensrud D. J. , and Yussouf N. , 2009: Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models. Wea. Forecasting, 24 , 187210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjic, Z. I., 1994: The step-mountain Eta coordinate: Further development of the convection, viscous sublayer, and turbulent closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1996a: The surface layer in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1996b: The surface layer parameterization in the NCEP Eta model. Research Activities in Atmospheric and Oceanic Modelling, World Meteorological Organization, 4.16–4.17.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf].

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL spring program 2004. Wea. Forecasting, 21 , 167181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The global land–atmosphere coupling experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

  • Lanicci, J. M., Carlson T. N. , and Warner T. T. , 1987: Sensitivity of the Great Plains severe-storm environment to soil moisture distribution. Mon. Wea. Rev., 115 , 26602673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., Tewari M. , Chen F. , Alfieri J. G. , and Niyogi D. , 2008: Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136 , 49154941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., Cheon W. G. , Hong S-Y. , and Raasch S. , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr., , 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convection rainfall. Rev. Geophys., 39 , 151177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr., , and Segal M. , 1986: Mesoscale circulations forced by differential terrain heating. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 516–548.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., Laszlo I. , Tarpley J. D. , and Mitchell K. , 2002: Geostationary satellite products for surface energy balance models. Adv. Space Res., 30 , 24272432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 1996: Changes to the operational “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11 , 391413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello Jr., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W-K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10 , 577599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., and Arritt R. W. , 1992: Nonclassical mesoscale circulations caused by sensible heat flux gradients. Bull. Amer. Meteor. Soc., 73 , 15931604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136 , 50955115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., 2003: Convective storms: Convective initiation. Encyclopedia of Atmospheric Sciences, Academic Press, 560–570.

  • Trier, S. B., Chen F. , and Manning K. W. , 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , Ahijevych D. A. , Weisman M. L. , and Bryan G. H. , 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63 , 24372461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , Manning K. W. , LeMone M. A. , and Davis C. A. , 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136 , 23212343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , and Ahijevych D. A. , 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67 , 10661090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Murphey H. V. , 2010: Frontal and radar refractivity analyses of the dryline on 11 June 2002 during IHOP. Mon. Wea. Rev., 138 , 228241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23 , 407437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, H. Power et al., Eds., Vol. 1, Air Pollution III, Computational Mechanics Publications, 53–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 448 192 64
PDF Downloads 535 60 1