Abstract
A method to predict an anisotropic expected forecast error distribution for consensus forecasts of tropical cyclone (TC) tracks is presented. The method builds upon the Goerss predicted consensus error (GPCE), which predicts the isotropic radius of the 70% isopleth of expected TC track error. Consensus TC track forecasts are computed as the mean of a collection of TC track forecasts from different models and are basin dependent. A novel aspect of GPCE is that it uses not only the uncertainty in the collection of constituent models to predict expected error, but also other features of the predicted storm, including initial intensity, forecast intensity, and storm speed. The new method, called GPCE along–across (GPCE-AX), takes a similar approach but separates the predicted error into across-track and along-track components. GPCE-AX has been applied to consensus TC track forecasts in the Atlantic (CONU/TVCN, where CONU is consensus version U and TVCN is the track variable consensus) and in the western North Pacific (consensus version W, CONW). The results for both basins indicate that GPCE-AX either outperforms or is equal in quality to GPCE in terms of reliability (the fraction of time verification is bound by the 70% uncertainty isopleths) and sharpness (the area bound by the 70% isopleths). GPCE-AX has been implemented at both the National Hurricane Center and at the Joint Typhoon Warning Center for real-time testing and evaluation.