Association Rule Data Mining Applications for Atlantic Tropical Cyclone Intensity Changes

Ruixin Yang Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Ruixin Yang in
Current site
Google Scholar
PubMed
Close
,
Jiang Tang Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Jiang Tang in
Current site
Google Scholar
PubMed
Close
, and
Donglian Sun Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Donglian Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study applies a data mining technique called association rule mining to the analysis of intensity changes of North Atlantic tropical cyclones (TCs). The “best track” data from the National Hurricane Center and the Statistical Hurricane Intensity Prediction Scheme databases were stratified into tropical depressions, tropical storms, and category 1–5 hurricanes based on the Saffir–Simpson hurricane scale. After stratification, the seven resulting groups of TCs plus two additional aggregation groups were further separated into intensifying, weakening, and stable TCs. The analysis of the stratified data for preprocessing revealed that faster northward storm motion (the meridional component of storm motion) favors tropical storm intensification but does not favor the intensification of hurricanes. Intensifying tropical storms are more strongly associated with a higher convergence in the upper atmosphere (200-hPa relative eddy momentum flux convergence) than weakening tropical storms, while intensifying hurricanes are more strongly associated with lower convergence values. The mined association rules showed that cofactors usually display higher-intensity prediction power in the stratified TC groups. The data mining results also identified a predictor set with fewer factors but improved probabilities of rapid intensification. This study found that the data mining technique not only sheds light on the roles of multiple-associated physical processes in tropical cyclone development—especially in rapid intensification processes—but also will help improve TC intensity forecasting. This paper provides an outline on how to use this data mining technique and how to overcome low occurrences of mined conditions in order to improve TC intensity forecasting capabilities.

Corresponding author address: Ruixan Yang, Dept. of Geography and Geoinformation Science, MS 6C3, College of Science, George Mason University, Fairfax, VA 22030-4444. E-mail: ryang@gmu.edu

Abstract

This study applies a data mining technique called association rule mining to the analysis of intensity changes of North Atlantic tropical cyclones (TCs). The “best track” data from the National Hurricane Center and the Statistical Hurricane Intensity Prediction Scheme databases were stratified into tropical depressions, tropical storms, and category 1–5 hurricanes based on the Saffir–Simpson hurricane scale. After stratification, the seven resulting groups of TCs plus two additional aggregation groups were further separated into intensifying, weakening, and stable TCs. The analysis of the stratified data for preprocessing revealed that faster northward storm motion (the meridional component of storm motion) favors tropical storm intensification but does not favor the intensification of hurricanes. Intensifying tropical storms are more strongly associated with a higher convergence in the upper atmosphere (200-hPa relative eddy momentum flux convergence) than weakening tropical storms, while intensifying hurricanes are more strongly associated with lower convergence values. The mined association rules showed that cofactors usually display higher-intensity prediction power in the stratified TC groups. The data mining results also identified a predictor set with fewer factors but improved probabilities of rapid intensification. This study found that the data mining technique not only sheds light on the roles of multiple-associated physical processes in tropical cyclone development—especially in rapid intensification processes—but also will help improve TC intensity forecasting. This paper provides an outline on how to use this data mining technique and how to overcome low occurrences of mined conditions in order to improve TC intensity forecasting capabilities.

Corresponding author address: Ruixan Yang, Dept. of Geography and Geoinformation Science, MS 6C3, College of Science, George Mason University, Fairfax, VA 22030-4444. E-mail: ryang@gmu.edu
Save
  • Agrawal, R., Imielinski T. , and Swami A. , 1993: Mining association rules between sets of items in large databases. Proc. Int. Conf. on Management of Data, Washington, DC, Association of Computing Machinery, 207–216.

    • Search Google Scholar
    • Export Citation
  • Borgelt, C., cited 2009: Apriori—Association rule induction/frequent item set mining. [Available online at http://www.borgelt.net/apriori.html.]

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., Velden C. S. , Bracken W. E. , Molinari J. , and Black P. G. , 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., Friedman J. H. , Olshen R. A. , and Stone C. J. , 1993: Classification and Regression Trees. Chapman and Hall, 358 pp.

  • Camargo, S. J., Robertson A. W. , Gaffney S. J. , Smyth P. , and Ghil M. , 2007a: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., Robertson A. W. , Gaffney S. J. , Smyth P. , and Ghil M. , 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., Persing J. , Montgomery M. T. , and Braun S. A. , 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087.

  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882.

  • DeMaria, M., and Kaplan J. , 1994a: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1994b: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins mark. Wea. Forecasting, 14, 326337.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Baik J.-J. , and Kaplan J. , 1993: Upper-level eddy angular momentum flux and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Knaff J. A. , and Sampson C. R. , 2007: Evaluation of long-term trends in operational tropical cyclone intensity forecasts. Meteor. Atmos. Phys., 59, 1928.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and Ritchie E. A. , 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061.

  • Frank, W. M., and Ritchie E. A. , 2001: Effects of vertical wind shear on hurricane intensity and structure. Mon. Wea. Rev., 129, 22492269.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2008: 2007 National Hurricane Center forecast verification report. NOAA/NWS/NCEP/Tropical Prediction Center Rep., 68 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2007.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S., and Coauthors, 2003: Probing hurricanes with stable isotopes of rain and water vapor. Mon. Wea. Rev., 131, 11121127.

  • Geng, L., and Hamilton H. J. , 2006: Interestingness measures for data mining: A survey. ACM Comput. Surv., 38 (3), doi:10.1145/1132960.1132963.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Han, E.-H., Karypis G. , Kumar V. , and Mobasher B. , 1997: Clustering based on association rule hypergraphs. Proc. Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, AZ, Association of Computing Machinery, 9–13.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., Molinari J. , and Keyser D. , 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584.

    • Search Google Scholar
    • Export Citation
  • Hong, X., Chang S. W. , Raman S. , Shay L. K. , and Hodur R. , 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., and Neumann C. J. , 1979: Statistical forecasts of tropical cyclone intensity for the North Atlantic basin. NOAA Tech. Memo. NWS NHC 10, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., Neumann C. J. , and Davis M. A. S. , 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 6, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., Thompson W. T. , Wang S. , and Liou C. S. , 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and DeMaria M. , 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., DeMaria M. , and Knaff J. A. , 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Seseske S. A. , DeMaria M. , and Demuth J. L. , 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Sampson C. R. , and DeMaria M. , 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Cram T. A. , Schumacher A. B. , Kossin J. P. , and DeMaria M. , 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23, 1728.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and Bell M. M. , 2007: Rapid intensification, eyewall contraction, and breakdown of Hurricane Charley (2004) near landfall. Geophys. Res. Lett., 34, L02802, doi:10.1029/2006GL027889.

    • Search Google Scholar
    • Export Citation
  • Li, W., Yang C. , and Sun D. , 2009: Mining geophysical parameters through decision-tree analysis to determine correlation with tropical cyclone development. Comput. Geosci., 35, 309316.

    • Search Google Scholar
    • Export Citation
  • Lowag, A., Black M. L. , and Eastin M. D. , 2008: Structural and intensity changes of Hurricane Bret (1999). Part I: Environmental influences. Mon. Wea. Rev., 136, 43204333.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., Bosart L. F. , Davis C. A. , Atallah E. H. , Gyakum J. R. , and Emanuel K. A. , 2006: Analysis of Hurricane Catarina (2004). Mon. Wea. Rev., 134, 30293053.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687.

  • Molinari, J., and Vollaro D. , 1989: External influences on hurricane intensity. Part I: Outflow-layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Vollaro D. , 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Bell M. M. , Aberson S. D. , and Black M. L. , 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Wang B. , 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721.

    • Search Google Scholar
    • Export Citation
  • NWS, cited 2007: Hurricanes…Unleashing nature’s fury. [Available online at http://www.nws.noaa.gov/om/hurricane/pdfs/HurricanesUNF07.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419.

  • Rogers, R., Chen S. , Tenerelli J. , and Willoughby H. , 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., Goni G. J. , and Black P. G. , 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383.

  • Silverstein, C., Brin S. , and Motwani R. , 1998: Beyond market baskets: Generalizing association rules to dependence rules. Data Min. Knowl. Discovery, 2, 3968.

    • Search Google Scholar
    • Export Citation
  • Ventham, J. D., and Wang B. , 2007: Large-scale flow patterns and their influence on the intensification rates of western North Pacific tropical storms. Mon. Wea. Rev., 135, 11101127.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Wu C.-C. , 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Kepert J. D. , and Holland G. J. , 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and Black P. G. , 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543549.

  • Willoughby, H. E., Clos J. A. , and Shoreibah M. G. , 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Lee C.-Y. , and Lin I.-I. , 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578.

  • Xiong, H., Tan P.-N. , and Kumar V. , 2006: Hyperclique pattern discovery. Data Min. Knowl. Discovery, 13, 219242, doi:10.1007/s10618-006-0043-9.

    • Search Google Scholar
    • Export Citation
  • Yang, R., Tang J. , and Kafatos M. , 2007: Improved associated conditions in rapid intensifications of tropical cyclones. Geophys. Res. Lett., 34, L20807, doi:10.1029/2007GL031241.

    • Search Google Scholar
    • Export Citation
  • Yang, R., Sun D. , and Tang J. , 2008: A “sufficient” condition combination for rapid intensifications of tropical cyclones. Geophys. Res. Lett., 35, L20802, doi:10.1029/2008GL035222.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345356.

  • Zehr, R. M., and Knaff J. A. , 2007: Atlantic major hurricanes, 1995–2005—Characteristics based on best-track, aircraft, and IR images. J. Climate, 20, 58655888.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Wang Y. , and Wu C. C. , 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 3859.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Chen L. , and Wang Y. , 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Wea. Rev., 136, 33073322.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and Zhang D.-L. , 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., Zhang D.-L. , and Weng F. , 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 259 90
PDF Downloads 252 44 5