Comparison between Low-Flash and Non-Lightning-Producing Convective Areas within a Mature Mesoscale Convective System

Jennifer L. Palucki National Weather Service, Albuquerque, New Mexico, and University of Oklahoma, Norman, Oklahoma

Search for other papers by Jennifer L. Palucki in
Current site
Google Scholar
PubMed
Close
,
Michael I. Biggerstaff University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael I. Biggerstaff in
Current site
Google Scholar
PubMed
Close
,
Donald R. MacGorman NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
, and
Terry Schuur NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Terry Schuur in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two small multicellular convective areas within a larger mesoscale convective system that occurred on 20 June 2004 were examined to assess vertical motion, radar reflectivity, and dual-polarimetric signatures between flash and non-flash-producing convection. Both of the convective areas had similar life cycles and general structures. Yet, one case produced two flashes, one of which may have been a cloud-to-ground flash, while the other convective area produced no flashes. The non-lightning-producing case had a higher peak reflectivity up to 6 km. Hence, if a reflectivity-based threshold were used as a precursor to lightning, it would have yielded misleading results. The peak upward motion in the mixed-phase region for both cases was 8 m s−1 or less. However, the lightning-producing storm contained a wider region where the updraft exceeded 5 m s−1. Consistent with the broader updraft region, the lightning-producing case exhibited a distinct graupel signature over a broader region than the non-lightning-producing convection. Slight differences in vertical velocity affected the quantity of graupel present in the mixed-phase region, thereby providing the subtle differences in polarimetric signatures that were associated with lightning activity. If the results here are generally applicable, then graupel volume may be a better precursor to a lightning flash than radar reflectivity. With the dual-polarimetric upgrade to the national observing radar network, it should be possible to better distinguish between lightning- and non-lightning-producing areas in weak convective systems that pose a potential safety hazard to the public.

Corresponding author address: Michael Biggerstaff, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: drdoppler@ou.edu

Abstract

Two small multicellular convective areas within a larger mesoscale convective system that occurred on 20 June 2004 were examined to assess vertical motion, radar reflectivity, and dual-polarimetric signatures between flash and non-flash-producing convection. Both of the convective areas had similar life cycles and general structures. Yet, one case produced two flashes, one of which may have been a cloud-to-ground flash, while the other convective area produced no flashes. The non-lightning-producing case had a higher peak reflectivity up to 6 km. Hence, if a reflectivity-based threshold were used as a precursor to lightning, it would have yielded misleading results. The peak upward motion in the mixed-phase region for both cases was 8 m s−1 or less. However, the lightning-producing storm contained a wider region where the updraft exceeded 5 m s−1. Consistent with the broader updraft region, the lightning-producing case exhibited a distinct graupel signature over a broader region than the non-lightning-producing convection. Slight differences in vertical velocity affected the quantity of graupel present in the mixed-phase region, thereby providing the subtle differences in polarimetric signatures that were associated with lightning activity. If the results here are generally applicable, then graupel volume may be a better precursor to a lightning flash than radar reflectivity. With the dual-polarimetric upgrade to the national observing radar network, it should be possible to better distinguish between lightning- and non-lightning-producing areas in weak convective systems that pose a potential safety hazard to the public.

Corresponding author address: Michael Biggerstaff, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: drdoppler@ou.edu
Save
  • Baker, B., Baker M. B. , Jayaratne E. R. , Latham J. , and Saunders C. P. R. , 1987: The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quart. J. Roy. Meteor. Soc., 113, 11931215.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., Cummins K. L. , Kehoe K. E. , and Krider E. P. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Houze R. A. Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Knupp K. , Detwiler A. , Liu L. , Caylor I. J. , and Black R. A. , 1997: Evolution of Florida thunderstorms during the Convection and Precipitation Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., Rust W. D. , Schuur T. J. , MacGorman D. R. , Krehbiel P. R. , and Rison W. , 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., Rust W. D. , MacGorman D. R. , Biggerstaff M. I. , and Schuur T. , 2010: Formation of charge structures in a supercell. Mon. Wea. Rev., 138, 37403761.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710.

    • Search Google Scholar
    • Export Citation
  • Cooper, M. A., Andrews C. J. , Holle R. L. , and Lopez R. E. , 2001: Lightning injuries. Wilderness Medicine, P. S. Auerbach, Ed., 4th ed. Mosby, Inc., 67–108.

    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374.

  • Crum, T. D., and Alberty R. L. , 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and Petersen W. A. , 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., Bringi V. N. , Ryzhkov A. V. , Zahrai A. , and Zrnić D. S. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Zhang F. , Wicker L. J. , Snyder C. , and Crook N. A. , 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., Jones J. J. , Winn W. P. , and Breed D. W. , 1989: The electrification of New Mexico thunderstorms. Part 1: The relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94, 86438656.

    • Search Google Scholar
    • Export Citation
  • Fehr, T., Dotzek N. , and Holler H. , 2005: Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms. Atmos. Res., 76, 167189.

    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and Orville R. E. , 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., Priegnitz D. L. , Manross K. L. , Smith T. M. , and Adams R. W. , 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824.

    • Search Google Scholar
    • Export Citation
  • Holle, R. I., Lopez R. E. , and Zimmermann C. , 1999: Updated recommendations for lightning safety—1998. Bull. Amer. Meteor. Soc., 80, 20352041.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., Murphy M. J. , and Krider E. P. , 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354.

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and Imy D. A. , 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P., Thomas R. , Rison W. , Hamlin T. , Harlin J. , and Davis M. , 2000: Lightning mapping observations in central Oklahoma. Eos, Trans. Amer. Geophys. Union, 81, 2125.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Lengyel, M. M., Brooks H. E. , Holle R. L. , and Cooper M. A. , 2005: Lightning casualties and their proximity to surrounding cloud-to-ground flashes. Preprints, 14th Symp. on Education, San Diego, CA, Amer. Meteor. Soc., P1.35. [Available online at http://ams.confex.com/ams/pdfpapers/85775.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lewis, J., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 18651885.

  • Lund, N. R., MacGorman D. R. , Schuur T. J. , Biggerstaff M. I. , and Rust W. D. , 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., and Miller L. J. , 1983: CEDRIC—A software package for Cartesian space editing, synthesis, and display of radar fields under interactive control. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 569–574.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190.

  • Oye, R., Miller C. , and Smith S. , 1995: Software for radar visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

    • Search Google Scholar
    • Export Citation
  • Palucki, J. L., 2007: The relationship between lightning and radar characteristics in a multicell convective system. M.S. thesis, School of Meteorology, University of Oklahoma, 83 pp.

  • Park, H. S., Ryzhkov A. , Zrnić D. , and Kim K. E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748.

    • Search Google Scholar
    • Export Citation
  • Pereyra, R. G., Avila E. E. , Castellano N. E. , and Saunders C. P. R. , 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20 80320 812.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., Rutledge S. A. , and Orville R. E. , 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Beard K. , 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 96, 247256.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, R., Detwiler A. , Helsdon J. Jr., and Smith P. L. , 1996: Precipitation development and electrification in Florida thunderstorm cells during Convection and Precipitation/Electrification Project. J. Geophys. Res., 101, 15991619.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., Brook M. , and Gourley M. F. , 1957: Thunderstorm charge separation. J. Meteor., 14, 426437.

  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Heinselman P. L. , Giangrande S. E. , and Zrnić D. S. , 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642655.

  • Saunders, C. P. R., Keith W. D. , and Mitzeva R. P. , 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96, 11 00711 017.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., Bax-Norman H. , Emersic C. , Avila E. E. , and Castellano N. E. , 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 26532673, doi:10.1256/qj.05.218.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., Ryzhkov A. , Heinselman P. , Zrnić D. , Burgess D. , and Scharfenberg K. , 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. National Severe Storms Laboratory Tech. Rep., 46 pp.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Krehbiel P. R. , 1996: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101, 26 64126 668.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., Krehbiel P. R. , Thomas R. J. , and Rison W. , 1995: Radio interferometric observations of cloud-to-ground lightning phenomena in Florida. J. Geophys. Res., 100, 27492783.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Gao J. , 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Wea. Rev., 138, 12501272.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-Scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Takahashi, T., and Miyawaki K. , 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025.

  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hamlin T. , Harlin J. , and Shown D. , 2001: Observations of VHF source powers radiated by lightning. Geophys. Res. Lett., 28, 143146.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., Mohr K. I. , Zipser E. J. , and Orville R. E. , 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part I: Radar reflectivity and lightning. J. Appl. Meteor., 35, 902918.

    • Search Google Scholar
    • Export Citation
  • Vincent, B. R., Carey L. D. , Schneider D. , Keeter K. , and Gonski R. , 2003: Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Wea. Dig., 27, 3544.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Ellis S. M. , Oye R. , Zrnić D. S. , Ryzhkov A. V. , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Weadon, M., Heinselman P. , Forsyth D. , Benner W. , Torok G. , and Kimpel J. , 2009: Multifunction Phased Array Radar (MPAR). Bull. Amer. Meteor. Soc., 90, 385389.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., Rutledge S. A. , and Tessendorf S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Zahrai, A., and Zrnić D. S. , 1993: The 10-cm-wavelength polarimetric weather radar at NOAA’s National Severe Storms Laboratory. J. Atmos. Oceanic Technol., 10, 649662.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Lutz K. R. , 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., and Ryzhkov A. , 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 714 397 24
PDF Downloads 138 45 2