Application of a Medium-Range Global Hydrologic Probabilistic Forecast Scheme to the Ohio River Basin

Nathalie Voisin Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Nathalie Voisin in
Current site
Google Scholar
PubMed
Close
,
Florian Pappenberger European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Florian Pappenberger in
Current site
Google Scholar
PubMed
Close
,
Dennis P. Lettenmaier Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
,
Roberto Buizza European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Roberto Buizza in
Current site
Google Scholar
PubMed
Close
, and
John C. Schaake NOAA/NWS/Office of Hydrologic Development, Silver Spring, Maryland

Search for other papers by John C. Schaake in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003–07. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis temperatures and winds, and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF Ensemble Prediction System (EPS) 10-day ensemble forecast. A parallel setup was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effects of the initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The hydrologic prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. The initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Consultant.

Corresponding author address: Dennis Lettenmaier, Dept. of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195. E-mail: dennisl@u.washington.edu

Abstract

A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003–07. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis temperatures and winds, and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF Ensemble Prediction System (EPS) 10-day ensemble forecast. A parallel setup was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effects of the initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The hydrologic prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. The initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Consultant.

Corresponding author address: Dennis Lettenmaier, Dept. of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195. E-mail: dennisl@u.washington.edu
Save
  • Abdulla, F. A., and Lettenmaier D. P. , 1997: Development of regional parameter estimation equations for a macroscale hydrologic model. J. Hydrol., 197, 237257.

    • Search Google Scholar
    • Export Citation
  • Ajami, N. K., Gupta H. V. , Wagener T. , and Sorooshian S. , 2004: Calibration of a semi-distributed hydrological model for streamflow estimation along a river system. J. Hydrol., 298, 112135.

    • Search Google Scholar
    • Export Citation
  • Asante, K. O., Dezanove R. M. , Artan G. , Lietzow R. , and Verdin J. , 2007: Developing a flood monitoring system from remotely sensed data for the Limpopo Basin. IEEE Trans. Geosci. Remote Sens., 45, 17091714.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , den Hurk B. V. , Hirchi M. , Betts A. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Pappenberger F. , Dutra E. , Viterbo P. , and van den Hurk B. , 2011: A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Processes, 25, 10461054, doi:10.1002/hyp.7808.

    • Search Google Scholar
    • Export Citation
  • Bartholmes, J. C., Thielen J. , Ramos M.-H. , and Gentilini S. , 2009: The European Flood Alert System EFAS – Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci., 13, 141153.

    • Search Google Scholar
    • Export Citation
  • Bogner, K., Pappenberger F. , Thielen J. , and De Roo A. , 2010: Wavelet based error correction and predictive uncertainty of a hydrological forecasting system. Geophysical Research Abstracts, Vol. 12, Abstract EGU2010-10245. [Available online at http://meetingorganizer.copernicus.org/EGU2010/EGU2010-10245.pdf.]

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 2010: Horizontal resolution impact on short- and long-range forecast error. Quart. J. Roy. Meteor. Soc., 136, 10201035.

  • Buizza, R., Richardson D. S. , and Palmer T. N. , 2003: Benefits of increased resolution in the ECMWF ensemble system and comparison with poor-man’s ensembles. Quart. J. Roy. Meteor. Soc., 129, 12691288.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Bidlot J.-R. , Wedi N. , Fuentes M. , Hamrud M. , Holt G. , and Vitart F. , 2007: The new ECMWF VAREPS (Variable Resolution Ensemble Prediction System). Quart. J. Roy. Meteor. Soc., 133, 681695.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Leutbecher M. , and Isaksen L. , 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 20512066.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Hay L. E. , 2004: Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J. Hydrometeor., 5, 1532.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Gangopadhyay S. , Hay L. , Rajagopalan B. , and Wilby R. , 2004: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262.

    • Search Google Scholar
    • Export Citation
  • Cloke, H. L., and Pappenberger F. , 2009: Operational flood forecasting: Review of ensemble techniques. J. Hydrol., 375, 613626.

  • Demargne, J., Brown J. , Liu Y. , Seo D.-J. , Wu L. , Toth Z. , and Zhu Y. , 2010: Diagnostic verification of hydrometeorological and hydrologic ensembles. Atmos. Sci. Lett., 11, 114122, doi:10.1002/asl.261.

    • Search Google Scholar
    • Export Citation
  • De Roo, A. P. J., and Coauthors, 2003: Development of a European flood forecasting system. Int. J. River Basin Manage., 1, 4959.

  • Feyen, L., Kalas M. , and Vrugt J. , 2008: Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization. Hydrol. Sci. J., 53, 293308, doi:10.1623/hysj.53.2.293.

    • Search Google Scholar
    • Export Citation
  • Funk, C., Michaelsen J. , Verdin J. , Artan G. , Husak G. , Senay G. , Gadain H. , and Magadzire T. , 2003: The collaborative historical African rainfall model: Description and evaluation. Int. J. Climatol., 23, 4766, doi:10.1002/joc.866.

    • Search Google Scholar
    • Export Citation
  • Ghelli, A., and Primo C. , 2009: On the use of the extreme dependency score to investigate the performance of an NWP model for rare events. Meteor. Appl., 16, 537544, doi:10.1002/met.153.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Kling H. , Yilmaz K. K. , and Martinez G. F. , 2009: Decomposition of the mean squared error and NSE performance criteria for improving hydrological modeling. J. Hydrol., 377, 8091, doi:10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327.

  • Hamill, T. M., and Juras J. , 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Whitaker J. S. , 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Mullen S. L. , 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. F. , Hossain F. , Curtis S. , and Huffman G. J. , 2007: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43, W08502, doi:10.1029/2006WR005739.

    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., and Webster P. J. , 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor., 11, 618641.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Katiyar N. , 2006: Improving flood forecasting in international river basins. Eos, Trans. Amer. Geophys. Union, 87, doi:10.1029/2006EO050001.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Nolte-Holube R. , and Raschke E. , 1996: A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus, 48A, 708721.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. P. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Neil, J., Schumann G. , Bates P. D. , Buytaert W. , Matgen P. , and Pappenberger F. , 2009: A data assimilation approach to discharge estimation from space. Hydrol. Processes, 23, 36413649.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, G. M., Czajkowski K. P. , Dubayah R. O. , and Lettenmaier D. P. , 2000: Macroscale hydrological modeling using remotely sensed inputs: Application to the Ohio River basin. J. Geophys. Res., 105 (D10), 12 49912 516.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2007: The ECMWF Ensemble Prediction System: Recent and on-going developments. ECMWF Research Dept. Tech. Memo. 540, 53 pp.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., Buizza R. , Doblas-Reyes F. , Jung T. , Leutbecher M. , Shutts G. J. , Steinheimer M. , and Weisheimer A. , 2009: Stochastic parameterization and model uncertainty. ECMWF Research Dept. Tech. Memo. 598, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., and Beven K. J. , 2006: Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resour. Res., 42, W05302, doi:10.1029/2005WR004820.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., and Buizza R. , 2009: The skill of ECMWF predictions for hydrological modelling. Wea. Forecasting, 24, 749766.

  • Pappenberger, F., Beven K. J. , Hunter N. , Gouweleeuw B. , Bates P. , de Roo A. , and Thielen J. , 2005: Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrol. Earth Syst. Sci., 9, 381393.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Harvey H. , Beven K. , Hall J. , and Meadowcroft I. , 2006: Decision tree for choosing an uncertainty analysis methodology: A wiki experiment. Hydrol. Processes, 20, 37933798.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Buizza R. , Bodis K. , and Ghelli A. , 2009a: The skill of probabilistic forecasts under observational uncertainties within the generalized likelihood uncertainty estimation framework for hydrological applications. J. Hydrometeor., 10, 807819.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Cloke H. L. , Balsamo G. , Ngo-Duc T. , and Oki T. , 2009b: Global runoff routing with the hydrological component of the ECMWF NWP system. Int. J. Climatol., 30, 21552174, doi:10.1002/joc.2028.

    • Search Google Scholar
    • Export Citation
  • Schaake, J., and Coauthors, 2007: Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrol. Earth Syst. Sci. Discuss., 4, 655717.

    • Search Google Scholar
    • Export Citation
  • Schumann, G., Bates P. D. , Horritt M. S. , Matgen P. , and Pappenberger F. , 2009: Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Rev. Geophys., 47, RG4001, doi:10.1029/2008RG00027.

    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., Herr H. , and Schaake J. C. , 2006: A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol. Earth Syst. Sci. Discuss., 3, 19872035.

    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133–145.

    • Search Google Scholar
    • Export Citation
  • Shi, X., Wood A. W. , and Lettenmaier D. P. , 2008: How essential is hydrologic model calibration to seasonal streamflow forecasting? J. Hydrometeor., 9, 13501363.

    • Search Google Scholar
    • Export Citation
  • Su, F., Hong Y. , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata basin. J. Hydrometeor., 9, 622640.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and Vautard R. , 1997: Evaluation of probabilistic prediction systems. Proc. ECMWF Workshop on Predictability, Reading, United Kingdom, ECMWF, 1–25.

    • Search Google Scholar
    • Export Citation
  • Thielen, J., Bartholmes J. , Ramos M.-H. , and de Roo A. , 2009: The European Flood Alert System – Part 1: Concept and development. Hydrol. Earth Syst. Sci., 13, 125140.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., Pappenberger F. , Thielen J. , Gadain H. , de Roo A. , Bodis K. , Del Medico M. , and Muthusi F. , 2010: Ensemble flood forecasting in Africa: A feasibility study in the Juba-Shabelle River basin. Atmos. Sci. Lett., 11, 123131, doi:10.1002/asl.266.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Van der Knijff, J. M., Younis J. , and de Roo A. P. J. , 2008: LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci., 24, 189212, doi:10.1080/13658810802549154.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2008: The new VAREPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799.

    • Search Google Scholar
    • Export Citation
  • Voisin, N., Schaake J. C. , and Lettenmaier D. P. , 2010: Adaptation of calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea. Forecasting, 25, 16031627.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., Storck P. , and Mass C. F. , 2002: Description and evaluation of a hydrometeorological forecast system for mountainous watersheds. Wea. Forecasting, 17, 250262.

    • Search Google Scholar
    • Export Citation
  • White, D., Johnston K. , and Miller M. , 2005: The Ohio River basin. Rivers of North America, A. C. Benke and C. E. Cushing, Eds., Elsevier, 375–412.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Yadav, M., Wagener T. , and Gupta H. , 2007: Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Adv. Water Resour., 30, 17561774, doi:10.1016/j.advwatres.2007.01.005.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., Gupta H. V. , and Sorooshian S. , 1998: Multi-objective global optimization for hydrologic models. J. Hydrol., 204, 8397.

  • Yilmaz, K. K., Adler R. F. , Tian Y. , Hong Y. , and Pierce H. , 2010: Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens., 31, 37633782, doi:10.1080/01431161.2010.483489.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2545 2061 38
PDF Downloads 333 78 7