Lightning and Severe Weather: A Comparison between Total and Cloud-to-Ground Lightning Trends

Christopher J. Schultz Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Christopher J. Schultz in
Current site
Google Scholar
PubMed
Close
,
Walter A. Petersen NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Walter A. Petersen in
Current site
Google Scholar
PubMed
Close
, and
Lawrence D. Carey Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many studies over the past several decades have attempted to correlate trends in lightning (e.g., rates, polarity) to severe weather occurrence. These studies mainly used cloud-to-ground (CG) lightning information due to the ease of data availability, high detection efficiency, and broad coverage across the United States, with somewhat inconclusive results. Conversely, it has been demonstrated that trends in total lightning are more robustly correlated to severe weather occurrence, with rapid increases in total lightning observed 10s of minutes prior to the onset of severe weather. Unfortunately, total lightning observations are not as numerous, or available over the same areal coverage domain, as provided by CG networks. Relatively few studies have examined concurrent trends in both total and CG lightning within the same severe thunderstorm, or even large sets of thunderstorms using an objective lightning jump algorithm. Multiple studies have shown that the total flash rate rapidly increases prior to the onset of severe weather. What is untested within the same framework is the use of CG information to perform the same task. Herein, total and CG lightning trends for 711 thunderstorms occurring in four regions of the country were examined to demonstrate the increased utility that total lightning provides over CG lightning, specifically within the framework of developing a useful lightning-based severe weather warning decision support tool. Results indicate that while both lightning datasets demonstrate the presence of increased lightning activity prior to the onset of severe weather, the use of total lightning trends was more effective than CG trends [probability of detection (POD), 79% versus 66%; false alarm rate (FAR), 36% versus 53%; critical success index (CSI), 55% versus 38%; Heidke skill score (HSS), 0.71 versus 0.55]. Moreover, 40% of false alarms associated with total lightning, and 16% of false alarms with CG lightning trends, occurred when a lightning jump associated with a severe weather “warning” was already in effect. If these false alarms are removed, the FAR drops from 36% to 22% for total lightning and from 53% to 44% for CG lightning. Importantly, average lead times prior to severe weather occurrence were higher using total lightning as compared with CG lightning (20.65 versus 13.54 min). The ultimate goal of this study was to demonstrate the increased utility of total lightning information that the Geostationary Lightning Mapper (GLM) will provide to operational meteorology in anticipation of severe convective weather on a hemispheric scale once Geostationary Operational Environmental Satellite-R (GOES-R) is deployed in the next decade.

Corresponding author address: Christopher J. Schultz, Dept. of Atmospheric Science, National Space Science and Technology Center, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: schultz@nsstc.uah.edu

Abstract

Many studies over the past several decades have attempted to correlate trends in lightning (e.g., rates, polarity) to severe weather occurrence. These studies mainly used cloud-to-ground (CG) lightning information due to the ease of data availability, high detection efficiency, and broad coverage across the United States, with somewhat inconclusive results. Conversely, it has been demonstrated that trends in total lightning are more robustly correlated to severe weather occurrence, with rapid increases in total lightning observed 10s of minutes prior to the onset of severe weather. Unfortunately, total lightning observations are not as numerous, or available over the same areal coverage domain, as provided by CG networks. Relatively few studies have examined concurrent trends in both total and CG lightning within the same severe thunderstorm, or even large sets of thunderstorms using an objective lightning jump algorithm. Multiple studies have shown that the total flash rate rapidly increases prior to the onset of severe weather. What is untested within the same framework is the use of CG information to perform the same task. Herein, total and CG lightning trends for 711 thunderstorms occurring in four regions of the country were examined to demonstrate the increased utility that total lightning provides over CG lightning, specifically within the framework of developing a useful lightning-based severe weather warning decision support tool. Results indicate that while both lightning datasets demonstrate the presence of increased lightning activity prior to the onset of severe weather, the use of total lightning trends was more effective than CG trends [probability of detection (POD), 79% versus 66%; false alarm rate (FAR), 36% versus 53%; critical success index (CSI), 55% versus 38%; Heidke skill score (HSS), 0.71 versus 0.55]. Moreover, 40% of false alarms associated with total lightning, and 16% of false alarms with CG lightning trends, occurred when a lightning jump associated with a severe weather “warning” was already in effect. If these false alarms are removed, the FAR drops from 36% to 22% for total lightning and from 53% to 44% for CG lightning. Importantly, average lead times prior to severe weather occurrence were higher using total lightning as compared with CG lightning (20.65 versus 13.54 min). The ultimate goal of this study was to demonstrate the increased utility of total lightning information that the Geostationary Lightning Mapper (GLM) will provide to operational meteorology in anticipation of severe convective weather on a hemispheric scale once Geostationary Operational Environmental Satellite-R (GOES-R) is deployed in the next decade.

Corresponding author address: Christopher J. Schultz, Dept. of Atmospheric Science, National Space Science and Technology Center, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: schultz@nsstc.uah.edu
Save
  • Biagi, C. J., Cummins K. L. , Kehoe K. E. , and Krider E. P. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and MacGorman D. R. , 1998: Evolution of cloud-to-ground lightning characteristics and storm structure in the Spearman, Texas, tornadic supercells of 31 May 1990. Mon. Wea. Rev., 126, 14511467.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., Cummins K. L. , Christian H. J. , and Goodman S. J. , 2001: Combined satellite- and surface-based estimation of the intracloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108129.

    • Search Google Scholar
    • Export Citation
  • Branick, M. L., and Doswell C. A. III, 1992: An observation of the relationship between supercell structure and lightning ground-strike polarity. Wea. Forecasting, 7, 143149.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., Rust W. D. , MacGorman D. R. , Biggerstaff M. I. , and Schurr T. J. , 2010: Formation of charge structures in a supercell. Mon. Wea. Rev., 138, 37403761.

    • Search Google Scholar
    • Export Citation
  • Buechler, D. E., Driscoll K. T. , Goodman S. J. , and Christian H. J. , 2000: Lightning activity within a tornadic thunderstorm observed by the Optical Transient Detector (OTD). Geophys. Res. Lett., 27, 22532256.

    • Search Google Scholar
    • Export Citation
  • Butts, D. A., Jr., 2006: An examination of the relationship between cool season tornadoes and cloud-to-ground lightning flashes. M.S. thesis, Dept. of Atmospheric Sciences, Texas A&M University, 109 pp.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Petersen W. A. , and Rutledge S. A. , 2003: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 18111831.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1992: Temporal and spatial relations between hail and lightning. J. Appl. Meteor., 31, 587604.

  • Cummins, K. L., and Murphy M. J. , 2009: An overview of lightning location systems: History, techniques, and data uses with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Cramer J. A. , Biagi C. J. , Krider E. P. , Jerauld J. , Uman M. A. , and Rakov V. A. , 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1. [Available online at http://ams.confex.com/ams/pdfpapers/105142.pdf.]

    • Search Google Scholar
    • Export Citation
  • Curran, E. B., and Rust W. D. , 1992: Positive ground flashes produced by low-precipitation thunderstorms in Oklahoma on 26 April 1984. Mon. Wea. Rev., 120, 544553.

    • Search Google Scholar
    • Export Citation
  • Curran, E. B., Holle R. L. , and Lopez R. E. , 2000: Lightning casualties and damages in the United States from 1959 to 1994. J. Climate, 13, 34483464.

    • Search Google Scholar
    • Export Citation
  • Darden, C. B., Nadler D. J. , Carcione B. C. , Blakeslee R. J. , Stano G. T. , and Buechler D. E. , 2010: Utilizing total lightning information to diagnose convective trends. Bull. Amer. Meteor. Soc., 91, 167175.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Davies-Jones R. , and Keller D. L. , 1990: On summary of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585.

    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., and Goodman S. J. , 2010: A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Oceanic Technol., 27, 322.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., Buechler D. E. , Wright P. D. , and Rust W. D. , 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 11851188.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437.

    • Search Google Scholar
    • Export Citation
  • Kane, R. J., 1991: Correlating lightning to severe local storms in the northeastern United States. Wea. Forecasting, 6, 312.

  • Knapp, D., 1994: Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather. Natl. Wea. Dig., 19 (2), 3542.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., Paech S. , and Goodman S. , 2003: Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennessee Valley region. Mon. Wea. Rev., 131, 172188.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., 2010: Optical characteristics of OTD flashes and the implications for flash-type discrimination. J. Atmos. Oceanic Technol., 27, 18221838.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., and Coauthors, 2004: North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analysis. J. Atmos. Oceanic Technol., 21, 543558.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 2008: The DC Lightning Mapping Array. Preprints, Third Conf. on Meteorological Applications of Lightning Data, New Orleans, LA, Amer. Meteor. Soc., 3.2. [Available online at http://ams.confex.com/ams/pdfpapers/129095.pdf.]

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., Thomas R. J. , Rison W. , Hamlin T. , Harlin J. , and Davis M. , 2000: GPS-based mapping system retrieval of lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81, 2125.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Rutledge S. A. , 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., Rutledge S. A. , Dye J. E. , Venticinque M. , Laroche P. , and Defer E. , 2000: Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A. Mon. Wea. Rev., 128, 160173.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study (STEPS). Bull. Amer. Meteor. Soc., 85, 11071125.

    • Search Google Scholar
    • Export Citation
  • LaPenta, K. D., Bosart L. F. , Galarneau T. J. , and Dickinson M. J. , 2005: A multiscale examination of the 31 May 1998 Mechanicsville, New York, tornado. Wea. Forecasting, 20, 494516.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Burgess D. W. , 1994: Positive cloud-to-ground lightning in tornadic storm and hailstorms. Mon. Wea. Rev., 122, 16711697.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., Burgess D. W. , Mazur V. , Rust W. D. , Taylor W. L. , and Johnson B. C. , 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Howard K. W. , and Dempsey C. L. , 1997: Intense convective storms with little or no lightning over central Arizona: A case of inadvertent weather modification? J. Appl. Meteor., 36, 302314.

    • Search Google Scholar
    • Export Citation
  • Maier, M. W., and Krider E. P. , 1982: A comparative study of cloud-to-ground lightning characteristics in Florida and Oklahoma thunderstorms. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 334–337.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., Buechler D. E. , Hodanish S. , and Goodman S. J. , 2002: The Almena, Kansas, tornadic storm of 3 June 1999: A long-lived supercell with very little cloud-to-ground lightning. Mon. Wea. Rev., 130, 407415.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., Bailey J. , Goodman S. J. , Blakeslee R. , and Buechler D. E. , 2005: A flash clustering algorithm for North Alabama Lightning Mapping Array data. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 5.3. [Available online at http://ams.confex.com/ams/pdfpapers/84373.pdf.]

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., Huffines G. R. , Burrows W. R. , Holle R. L. , and Cummins K. L. , 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109.

    • Search Google Scholar
    • Export Citation
  • Perez, A. H., Wicker L. J. , and Orville R. E. , 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12, 428437.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., Naccarato K. P. , Pinto I. R. C. A. , Fernandes W. A. , and Neto O. P. , 2006: Monthly distribution of cloud-to-ground lightning flashes as observed by lightning location systems. Geophys. Res. Lett., 33, L09811, doi:10.1029/2006GL026081.

    • Search Google Scholar
    • Export Citation
  • Rison, W., Thomas R. J. , Krehbiel P. R. , Hamlin T. , and Harlin J. , 1999: A GPS-based three dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and Fuelburg H. E. , 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., Petersen W. A. , and Carey L. D. , 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., Cummins K. , Diendorfer G. , and Dorninger M. , 2005: Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res., 110, D09101, doi:10.1029/2004JD005332.

    • Search Google Scholar
    • Export Citation
  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74, 189203.

    • Search Google Scholar
    • Export Citation
  • Soula, S., Seity Y. , Feral L. , and Sauvageot H. , 2004: Cloud-to-ground lightning activity in hail-bearing storms. J. Geophys. Res., 109, D02101, doi:10.1029/2003JD003669.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., Orville R. E. , Murphy M. J. , and Demetriades N. W. S. , 2005: Total lightning and radar characteristics of supercells: Insights on electrification and severe weather forecasting. Preprints, Conf. on the Meteorological Application of Lightning Data, San Diego, CA, Amer. Meteor. Soc., P1.7. [Available online at http://ams.confex.com/ams/pdfpapers/84908.pdf.]

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., Orville R. E. , and Carey L. D. , 2007: Total lightning signatures of thunderstorm intensity over north Texas. Part I: Supercells. Mon. Wea. Rev., 135, 32813302.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., Wiens K. C. , and Rutledge S. A. , 2007: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. P., Krehbiel P. R. , Rison W. , Hunyady S. , Winn W. , Hamlin T. , and Harlin J. , 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Wheatly D. M. , Atkins N. T. , and Przybylinkski R. W. , 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., Hart J. A. , and Janish P. R. , 2002: An examination of severe thunderstorm wind report climatology: 1970–1999. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 446–449.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., Rutledge S. A. , and Tessendorf S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Williams, E. R., Weber M. E. , and Orville R. E. , 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 13 21313 220.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. G., Cummins K. L. , and Krider E. P. , 2009: Small negative cloud-to-ground lightning reports at the NASA Kennedy Space Center and Air Force Eastern Range. J. Geophys. Res., 114, D24103, doi:10.1029/2009JD012429.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. , Johnson J. T. , and Thomas K. W. , 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4075 784 58
PDF Downloads 2115 422 24