Comparison of Raman Lidar Observations of Water Vapor with COSMO-DE Forecasts during COPS 2007

Christian Herold * Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Christian Herold in
Current site
Google Scholar
PubMed
Close
,
Dietrich Althausen * Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Dietrich Althausen in
Current site
Google Scholar
PubMed
Close
,
Detlef Müller * Leibniz Institute for Tropospheric Research, Leipzig, Germany
Gwangju Institute of Science and Technology, Gwangju, South Korea

Search for other papers by Detlef Müller in
Current site
Google Scholar
PubMed
Close
,
Matthias Tesche * Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Matthias Tesche in
Current site
Google Scholar
PubMed
Close
,
Patric Seifert * Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Patric Seifert in
Current site
Google Scholar
PubMed
Close
,
Ronny Engelmann * Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Ronny Engelmann in
Current site
Google Scholar
PubMed
Close
,
Cyrille Flamant Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS-UPMC-UVSQ, Paris, France

Search for other papers by Cyrille Flamant in
Current site
Google Scholar
PubMed
Close
,
Rohini Bhawar Dipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata, Potenza, Italy

Search for other papers by Rohini Bhawar in
Current site
Google Scholar
PubMed
Close
, and
Paolo Di Girolamo Dipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata, Potenza, Italy

Search for other papers by Paolo Di Girolamo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Water vapor measurements with the multiwavelength Raman lidar Backscatter Extinction Lidar-Ratio Temperature Humidity Profiling Apparatus (BERTHA) were performed during the Convective and Orographically-induced Precipitation Study (COPS) in the Black Forest, Germany, from June to August 2007. For quality assurance, profiles of the water vapor mixing ratio measured with BERTHA are compared to simultaneous measurements of a radiosonde and an airborne differential absorption lidar (DIAL) on 31 July 2007. The differences from the radiosonde observations are found to be on average 1.5% and 2.5% in the residual layer and in the free troposphere, respectively. During the two overflights at 1937 and 2018 UTC, the differences from the DIAL results are −2.2% and −3.7% in the residual layer and 2.1% and −2.6% in the free troposphere. After this performance check, short-range forecasts from the German Meteorological Service’s (Deutscher Wetterdienst, DWD) version of the Consortium for Small-Scale Modeling (COSMO-DE) model are compared to the BERTHA measurements for two case studies. Generally, it is found that water vapor mixing ratios from short-range forecasts are on average 7.9% drier than the values measured in the residual layer. In the free troposphere, modeled values are 9.7% drier than the measurements.

Current affiliation: German Meteorological Service, Offenbach, Germany.

Corresponding author address: Dietrich Althausen, Leibniz Institute for Tropospheric Research, Permoserstr. 15, Leipzig D-04103, Germany. E-mail: dietrich@tropos.de

Abstract

Water vapor measurements with the multiwavelength Raman lidar Backscatter Extinction Lidar-Ratio Temperature Humidity Profiling Apparatus (BERTHA) were performed during the Convective and Orographically-induced Precipitation Study (COPS) in the Black Forest, Germany, from June to August 2007. For quality assurance, profiles of the water vapor mixing ratio measured with BERTHA are compared to simultaneous measurements of a radiosonde and an airborne differential absorption lidar (DIAL) on 31 July 2007. The differences from the radiosonde observations are found to be on average 1.5% and 2.5% in the residual layer and in the free troposphere, respectively. During the two overflights at 1937 and 2018 UTC, the differences from the DIAL results are −2.2% and −3.7% in the residual layer and 2.1% and −2.6% in the free troposphere. After this performance check, short-range forecasts from the German Meteorological Service’s (Deutscher Wetterdienst, DWD) version of the Consortium for Small-Scale Modeling (COSMO-DE) model are compared to the BERTHA measurements for two case studies. Generally, it is found that water vapor mixing ratios from short-range forecasts are on average 7.9% drier than the values measured in the residual layer. In the free troposphere, modeled values are 9.7% drier than the measurements.

Current affiliation: German Meteorological Service, Offenbach, Germany.

Corresponding author address: Dietrich Althausen, Leibniz Institute for Tropospheric Research, Permoserstr. 15, Leipzig D-04103, Germany. E-mail: dietrich@tropos.de
Save
  • Althausen, D., Müller D. , Ansmann A. , Wandinger U. , Hube H. , Clauder E. , and Zörner S. , 2000: Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol., 17, 14691482.

    • Search Google Scholar
    • Export Citation
  • Arshinov, Y., Bobrovnikov S. , Serikov I. , Ansmann A. , Wandinger U. , Althausen D. , Mattis I. , and Müller D. , 2005: Daytime operation of a pure rotational Raman lidar by the use of a Fabry–Perot interferometer. Appl. Opt., 44, 35933603.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., Förstner J. , Klink S. , Reinhardt T. , Schraff C. , Seifert A. , and Stephan K. , 2011: Short description of the convection resolving model COSMO-DE (LMK) and its databases on the data server of DWD. [Available online at http://www.dwd.de/bvbw/generator/DWDWWW/Content/Forschung/FE1/Veroeffentlichungen/Download/LMK__DBbeschr__1104__en,templateId=raw,property=publicationFile.pdf.]

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2007: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part II: Airborne-to-airborne systems. J. Atmos. Oceanic Technol., 24, 2239.

    • Search Google Scholar
    • Export Citation
  • Bhawar, R., and Coauthors, 2011: The water vapour intercomparison effort in the framework of the Convective and Orographically-Induced Precipitation Study: Airborne-to-ground-based and airborne-to-airborne lidar systems. Quart. J. Roy. Meteor. Soc., 137, 325348, doi:10.1002/qj.697.

    • Search Google Scholar
    • Export Citation
  • Bronstein, I. N., Semendjajew K. A. , Musiol G. , and Muehlig H. , 2001: Taschenbuch der Mathematik. Verlag, 1123 pp.

  • Bruneau, D., Quaglia P. , Flamant C. , Meissonnier M. , and Pelon J. , 2001a: The airborne lidar LEANDRE 2 for water vapor profiling in the troposphere. Part I: Description. Appl. Opt., 40, 34503461.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., Quaglia P. , Flamant C. , and Pelon J. , 2001b: The airborne lidar LEANDRE 2 for water vapor profiling in the troposphere. Part II: First results. Appl. Opt., 40, 34623475.

    • Search Google Scholar
    • Export Citation
  • Buchholz, A., 1995: Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt., 35, 27652773.

  • Cooney, J., 1970: Comparisons of water vapor profiles obtained by radiosondes and laser backscatter. J. Appl. Meteor., 10, 301308.

  • Di Girolamo, P., Summa D. , and Ferretti R. , 2009: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol., 26, 17421762.

    • Search Google Scholar
    • Export Citation
  • Elterman, L., 1968: UV, visible, and IR attenuation for altitudes to 50 km. AVCLR-68-0153, U.S. Air Force Cambridge Research Laboratory, 56 pp.

    • Search Google Scholar
    • Export Citation
  • English, S. J., Guillou C. , Prigent C. , and Jones D. C. , 1994: Aircraft measurements of water vapour continuum absorption at millimetre wavelengths. Quart. J. Roy. Meteor. Soc., 120, 603625, doi:10.1002/qj.49712051706.

    • Search Google Scholar
    • Export Citation
  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor Z., 17, 931948.

  • Mattis, I., and Coauthors, 2002: Relative-humidity profiling in the troposphere with a Raman lidar. Appl. Opt., 41, 64516462.

  • Melfi, S. H., 1972: Remote measurement of the atmosphere using Raman scattering. Appl. Opt., 11, 16051610.

  • Melfi, S. H., Lawrence J. D. J. , and McCormick M. P. , 1969: Observation of Raman scattering by water vapor in the atmosphere. Appl. Phys. Lett., 15, 295297.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Whiteman D. N. , and Leblanc T. , 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Saïd, F., Canut G. , Durand P. , Lohou F. , and Lothon M. , 2010: Seasonal evolution of boundary-layer turbulence measured by aircraft during the AMMA 2006 Special Observation Period. Quart. J. Roy. Meteor. Soc., 136 (S1), 4765, doi:10.1002/qj.475.

    • Search Google Scholar
    • Export Citation
  • Teillet, P. M., 1990: Rayleigh optical depth comparisons from various sources. Appl. Opt., 29, 18971900.

  • Tesche, M., and Coauthors, 2009: Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus, 61B, 144164.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963.

  • Wandinger, U., 2005: Raman lidar. Lidar–Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer, 241–271.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D., 2003: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equation. Appl. Opt., 42, 25712592.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-Induced Precipitation Study (COPS): The scientific strategy, the field phase, and first highlights. Quart. J. Roy. Meteor. Soc., 137, 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 61 3
PDF Downloads 47 16 0