Improving Numerical Weather Predictions of Summertime Precipitation over the Southeastern United States through a High-Resolution Initialization of the Surface State

Jonathan L. Case ENSCO Inc./Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, Alabama

Search for other papers by Jonathan L. Case in
Current site
Google Scholar
PubMed
Close
,
Sujay V. Kumar SAIC/NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
Jayanthi Srikishen Universities Space Research Association, Huntsville, Alabama

Search for other papers by Jayanthi Srikishen in
Current site
Google Scholar
PubMed
Close
, and
Gary J. Jedlovec NASA Marshall Space Flight Center/SPoRT Center, Huntsville, Alabama

Search for other papers by Gary J. Jedlovec in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.

Corresponding author address: Jonathan L. Case, National Space Science and Technology Center, Rm. 3062, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: jonathan.case-1@nasa.gov

Abstract

It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.

Corresponding author address: Jonathan L. Case, National Space Science and Technology Center, Rm. 3062, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: jonathan.case-1@nasa.gov
Save
  • Avissar, R., and Pielke R. A. , 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 21132136.

    • Search Google Scholar
    • Export Citation
  • Baker, R. D., Lynn B. H. , Boone A. , Tao W.-K. , and Simpson J. , 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2, 193211.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., Minnis P. , Ramanathan V. , and Harrison E. , 1986: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Climate Appl. Meteor., 25, 214226.

    • Search Google Scholar
    • Export Citation
  • Brown, B. G., Bullock R. , Halley Gotway J. , Ahijevych D. , Davis C. , Gilleland E. , and Holland L. , 2007: Application of the MODE object-based verification tool for the evaluation of model precipitation fields. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 10A.2. [Available online at http://ams.confex.com/ams/pdfpapers/124856.pdf.]

    • Search Google Scholar
    • Export Citation
  • Brown, B. G., Gotway J. H. , Bullock R. , Gilleland E. , Fowler T. , Ahijevych D. , and Jensen T. , 2009: The Model Evaluation Tools (MET): Community tools for forecast evaluation. Preprints, 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 9A.6. [Available online at http://ams.confex.com/ams/pdfpapers/151349.pdf.]

    • Search Google Scholar
    • Export Citation
  • Case, J. L., Manobianco J. , Dianic A. V. , Wheeler M. M. , Harms D. E. , and Parks C. R. , 2002: Verification of high-resolution RAMS forecasts over east-central Florida during the 1999 and 2000 summer months. Wea. Forecasting, 17, 11331151.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., Crosson W. L. , Kumar S. V. , Lapenta W. M. , and Peters-Lidard C. D. , 2008: Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J. Hydrometeor., 9, 12491266.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Avissar R. , 1994a: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 13821401.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Avissar R. , 1994b: The impact of land-surface wetness on mesoscale heat fluxes. J. Appl. Meteor., 33, 13241340.

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003a: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108, 8845, doi:10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003b: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., Stensrud D. J. , Mora F. , Merchant J. W. , and Wetzel P. J. , 2001: Value of incorporating satellite-derived land cover data in MM5/PLACE for simulating surface temperatures. J. Hydrometeor., 2, 453468.

    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. , and Bullock R. , 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784.

    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. G. , Bullock R. , and Halley-Gotway J. , 2009: The Method for Object-based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., Parrish D. F. , and Lord S. J. , 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6, 538547.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776.

  • Findell, K. L., and Eltahir E. A. , 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583.

    • Search Google Scholar
    • Export Citation
  • Godfrey, C. M., and Stensrud D. J. , 2008: Soil temperature and moisture errors in the operational Eta Model analyses. J. Hydrometeor., 9, 367387.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., Lapenta W. M. , Jedlovec G. J. , Dodge J. C. , and Bradshaw J. T. , 2004: The NASA Short-term Prediction Research and Transition (SPoRT) Center: A collaborative model for accelerating research into operations. Preprints, 20th Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Seattle, WA, Amer. Meteor. Soc., P1.34. [Available online at http://ams.confex.com/ams/pdfpapers/70210.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: Derivation of green vegetation fraction from NOAA/AVHRR for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543.

    • Search Google Scholar
    • Export Citation
  • Haines, S. L., Jedlovec G. J. , and Lazarus S. M. , 2007: A MODIS sea surface temperature composite for regional applications. IEEE Trans. Geosci. Remote Sens., 45, 29192927.

    • Search Google Scholar
    • Export Citation
  • Holt, T. R., Niyogi D. , Chen F. , Manning K. , LeMone M. A. , and Qureshi A. , 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • James, K. A., Stensrud D. J. , and Yussouf N. , 2009: Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models. Wea. Forecasting, 24, 187210.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443.

  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Jedlovec, G., LaFontaine F. , Shafer J. , Vazquez J. , Armstrong E. , and Chin M. , 2009: An enhanced MODIS/AMSR-E SST composite product. Proc. GHRSST User Symp., Santa Rosa, CA, Group for High Resolution Sea Surface Temperature. [Available online at http://weather.msfc.nasa.gov/sport/conference/ pdfs/GHRSST_workshop_paper_Jedlovec_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Dembek S. R. , Weiss S. J. , Case J. L. , Levitt J. J. , and Sobash R. A. , 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4, 408423.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land Information System—An interoperable framework for high resolution land surface modeling. Environ. Model. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Peters-Lidard C. D. , Eastman J. L. , and Tao W.-K. , 2007: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Model. Software, 23, 169181, doi:10.1016/j.envsoft.2007.05.012.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Reichle R. H. , Koster R. D. , Crow W. T. , and Peters-Lidard C. D. , 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 15341547.

    • Search Google Scholar
    • Export Citation
  • Kurkowski, N. P., Stensrud D. J. , and Baldwin M. E. , 2003: Assessment of implementing satellite-derived land cover data in the Eta Model. Wea. Forecasting, 18, 404416.

    • Search Google Scholar
    • Export Citation
  • LaCasse, K. M., Splitt M. E. , Lazarus S. M. , and Lapenta W. M. , 2008: The impact of high-resolution sea surface temperatures on the simulated nocturnal Florida marine boundary layer. Mon. Wea. Rev., 136, 13491372.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors 2007: NCAR/CU surface, soil, and vegetation observations during the International H2O Project 2002 field campaign. Bull. Amer. Meteor. Soc., 88, 6581.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., Tewari M. , Chen F. , Alfieri J. G. , and Niyogi D. , 2008: Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136, 49154941.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lin, Y., Mitchell K. E. , Rogers E. , and DiMego G. J. , 2005: Using hourly and daily precipitation analyses to improve model water budget. Preprints, Ninth Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Diego, CA, Amer. Meteor. Soc., 3.3. [Available online at http://ams.confex.com/ams/pdfpapers/84484.pdf.]

    • Search Google Scholar
    • Export Citation
  • Marshall, C. H., Crawford K. C. , Mitchell K. E. , and Stensrud D. J. , 2003: The impact of the land surface physics in the operational NCEP Eta Model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Wea. Forecasting, 18, 748768.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Ookouchi, Y., Segal M. , Kessler R. C. , and Pielke R. A. , 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 112, 22812292.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , Lui P. , Mahanama S. P. P. , Njoku E. G. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and Kukla G. , 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24, 402411.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Houser P. R. , Berg A. A. , and Famiglietti J. S. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146155.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W.-K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., Cosh M. H. , and Jackson T. J. , 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077.

    • Search Google Scholar
    • Export Citation
  • Schiferl, L., Fuell K. K. , Case J. L. , and Jedlovec G. J. , 2010: Evaluation of enhanced high resolution MODIS/AMSR-E SSTs and the impact on regional weather forecasts. Preprints, 14th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, Atlanta, GA, Amer. Meteor. Soc., P535. [Available online at http://ams.confex.com/ams/pdfpapers/163774.pdf.]

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Weisman M. L. , 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3, NCAR Tech. Note NCAR/TN-475+STR, 123 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., Manabe S. , and Holloway J. L. Jr., 1965: Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93, 727768.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , and Manning K. W. , 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , Manning K. W. , LeMone M. A. , and Davis C. A. , 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 23212343.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., LeMone M. A. , Chen F. , and Manning K. W. , 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Parsons D. B. , 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522.

  • Weckwerth, T. M., and Coauthors 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Beljaars A. , 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, doi:10.1029/2005GL023030.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 186 9
PDF Downloads 235 125 4