Multiscale Processes Leading to Supercells in the Landfalling Outer Rainbands of Hurricane Katrina (2005)

Benjamin W. Green Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Benjamin W. Green in
Current site
Google Scholar
PubMed
Close
,
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
, and
Paul Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul Markowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Shallow supercells are frequently observed within the outer rainbands—both onshore and offshore—of landfalling tropical cyclones (TCs). Such supercells can produce tornadoes along the coast even when the center of the parent TC is hundreds of kilometers from land, as was the case with Hurricane Katrina (2005). A convection-permitting simulation with 1.5-km grid spacing in the innermost domain is used in conjunction with radar, radiosonde, and surface observations to investigate the multiscale conditions conducive to supercells in the landfalling outer rainbands of Katrina. Several hours before the eye of the TC made landfall, a baroclinic zone developed along the coast; this front strongly influenced the horizontal distributions of cell-relative helicity and CAPE such that the largest values of these parameters were located over land and water, respectively. An example of a tornadic supercell in the outer rainbands of Katrina is examined. This cell intensified just before landfall and spawned a tornado along the coast, demonstrating the ability of baroclinic boundaries to enhance low-level horizontal vorticity and subsequently intensify updraft rotation within passing cells. Farther inland, the tornadic cell weakened rapidly, suggesting the presence of a narrow coastal zone in which both shear and buoyancy are favorable for tornadogenesis.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: fzhang@psu.edu

Abstract

Shallow supercells are frequently observed within the outer rainbands—both onshore and offshore—of landfalling tropical cyclones (TCs). Such supercells can produce tornadoes along the coast even when the center of the parent TC is hundreds of kilometers from land, as was the case with Hurricane Katrina (2005). A convection-permitting simulation with 1.5-km grid spacing in the innermost domain is used in conjunction with radar, radiosonde, and surface observations to investigate the multiscale conditions conducive to supercells in the landfalling outer rainbands of Katrina. Several hours before the eye of the TC made landfall, a baroclinic zone developed along the coast; this front strongly influenced the horizontal distributions of cell-relative helicity and CAPE such that the largest values of these parameters were located over land and water, respectively. An example of a tornadic supercell in the outer rainbands of Katrina is examined. This cell intensified just before landfall and spawned a tornado along the coast, demonstrating the ability of baroclinic boundaries to enhance low-level horizontal vorticity and subsequently intensify updraft rotation within passing cells. Farther inland, the tornadic cell weakened rapidly, suggesting the presence of a narrow coastal zone in which both shear and buoyancy are favorable for tornadogenesis.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: fzhang@psu.edu
Save
  • Akter, N., and Tsuboki K. , 2010: Characteristics of supercells in the rainband of numerically simulated Cyclone Sidr. SOLA, 6A, 2528, doi:10.2151/sola.6A-007.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., Weisman M. L. , and Wicker L. J. , 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927.

    • Search Google Scholar
    • Export Citation
  • Baker, A. K., Parker M. D. , and Eastin M. D. , 2009: Environmental ingredients for supercells and tornadoes within Hurricane Ivan. Wea. Forecasting, 24, 223244.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1970: Some aspects of a severe, right-moving thunderstorm deduced from mesonetwork rawinsonde observations. J. Atmos. Sci., 27, 634648.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., Barnes G. M. , and Franklin J. L. , 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., Klimowski B. A. , Zeitler J. W. , Thompson R. L. , and Weisman M. L. , 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374.

  • Curtis, L., 2004: Midlevel dry intrusions as a factor in tornado outbreaks associated with landfalling tropical cyclones from the Atlantic and Gulf of Mexico. Wea. Forecasting, 19, 411427.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006.

  • Davies-Jones, R. P., 1993: Helicity trends in tornado outbreaks. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 56–60.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., Burgess D. W. , and Foster M. , 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and Rasmussen E. N. , 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., and Link M. C. , 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 20812104.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and Pietrycha A. E. , 2006: Archetypes for surface baroclinic boundaries influencing tropical cyclone tornado occurrences. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P8.2. [Available online at http://ams.confex.com/ams/pdfpapers/114992.pdf.]

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fang, J., and Zhang F. , 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672.

  • Fang, J., and Zhang F. , 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105, 11361150.

  • Gentry, R. C., 1983: Genesis of tornadoes associated with hurricanes. Mon. Wea. Rev., 111, 17931805.

  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., Montgomery M. T. , and Davis C. A. , 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hill, E. L., Malkin W. , and Schulz W. A. Jr., 1966: Tornadoes associated with cyclones of tropical origin—Practical features. J. Appl. Meteor., 5, 745763.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952.

    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., Rhome J. R. , and Brown D. P. , 2006: Tropical cyclone report—Hurricane Katrina 23–30 August 2005. NOAA, 43 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf.]

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., Walters J. , and Biggerstaff M. , 2006: Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. J. Atmos. Sci., 63, 234251.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., Bell M. M. , and Goodman K. E. Jr., 2008: Supercells and mesocyclones in the outer rainbands of Hurricane Katrina (2005). Geophys. Res. Lett., 35, L16803, doi:10.1029/2008GL034724.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Hoxit L. R. , and Chappell C. F. , 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322336.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Zaras D. S. , MacKeen P. L. , Gourley J. J. , Rabin R. , and Howard K. W. , 1999: Echo height measurements with the WSR-88D: Use of data from one versus two radars. Wea. Forecasting, 14, 455460.

    • Search Google Scholar
    • Export Citation
  • Malkin, W., and Galway J. G. , 1953: Tornadoes associated with hurricanes. Mon. Wea. Rev., 81, 299303.

  • Markowski, P. M., Rasmussen E. N. , and Straka J. M. , 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Hannon C. , Frame J. , Lancaster E. , Pietrycha A. , Edwards R. , and Thompson R. L. , 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., Niino H. , and Kato T. , 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., 1987: Observations of the Hurricane “Danny” tornado outbreak of 16 August 1985. Mon. Wea. Rev., 115, 12061223.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., 1991: Buoyancy and shear characteristics of hurricane–tornado environments. Mon. Wea. Rev., 119, 19541978.

  • McCaul, E. W., Jr., and Weisman M. L. , 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408429.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., Buechler D. E. , Goodman S. J. , and Cammarata M. , 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132, 17471763.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 36713682.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Vollaro D. , 2008: Extreme helicity and intense convective towers in Hurricane Bonnie. Mon. Wea. Rev., 136, 43554372.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Vollaro D. , 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67, 274284.

  • Montgomery, M. T., Nicholls M. E. , Cram T. A. , and Saunders A. B. , 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Morin, M. J., Parker M. D. , Hill K. A. , and Lackmann G. M. , 2010: A numerical investigation of supercells in landfalling tropical cyclones. Extended Abstracts, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P3.3. [Available online at http://ams.confex.com/ams/pdfpapers/175965.pdf.]

    • Search Google Scholar
    • Export Citation
  • NCDC, 2005: Storm Data. Vol. 47, No. 8, 318 pp.

  • NOAA, 2006: WSR-88D products and algorithms. Part C, Federal Meteorological Handbook No. 11: Doppler Radar Meteorological Observations, Office of Federal Coordinator for Meteorology, FCM-H11C-2006, 390 pp.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Cheon W.-G. , Hong S.-Y. , and Raasch S. , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Novlan, D. J., 1973: Hurricane spawned tornadoes. Dept. of Atmos. Sci. Rep. 200, Colorado State University, 57 pp. [Available online at http://digitool.library.colostate.edu/exlibris/dtl/d3_1/apache_media/2235.pdf.]

    • Search Google Scholar
    • Export Citation
  • Novlan, D. J., and Gray W. M. , 1974: Hurricane-spawned tornadoes. Mon. Wea. Rev., 102, 476488.

  • Orton, R., 1970: Tornadoes associated with Hurricane Beulah on September 19–23, 1967. Mon. Wea. Rev., 98, 541547.

  • Pearson, A. D., and Sadowski A. F. , 1965: Hurricane-induced tornadoes and their distribution. Mon. Wea. Rev., 93, 461464.

  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and Doswell C. A. III, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20, 954970.

    • Search Google Scholar
    • Export Citation
  • Rao, G. V., Scheck J. W. , Edwards R. , and Schaefer J. T. , 2005: Structures of mesocirculations producing tornadoes associated with Tropical Cyclone Frances (1998). Pure Appl. Geophys., 162, 16271641.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535.

  • Rasmussen, E. N., Richardson S. , Straka J. M. , Markowski P. M. , and Blanchard D. O. , 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191.

    • Search Google Scholar
    • Export Citation
  • Sadowski, A., 1962: Tornadoes associated with Hurricane Carla, 1961. Mon. Wea. Rev., 90, 514516.

  • Schneider, D., and Sharp S. , 2007: Radar signatures of tropical cyclone tornadoes in central North Carolina. Wea. Forecasting, 22, 278286.

    • Search Google Scholar
    • Export Citation
  • Schultz, L. A., and Cecil D. J. , 2009: Tropical cyclone tornadoes, 1950–2007. Mon. Wea. Rev., 137, 34713484.

  • Sheets, R. C., 1969: Some mean hurricane soundings. J. Appl. Meteor., 8, 134146.

  • Sippel, J. A., and Zhang F. , 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and Zhang F. , 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, J. S., 1965: The hurricane-tornado. Mon. Wea. Rev., 93, 453459.

  • Spratt, S. M., Sharp D. W. , Welsh P. , Sandrik A. , Alsheimer F. , and Paxton C. , 1997: A WSR-88D assessment of tropical cyclone outer rainband tornadoes. Wea. Forecasting, 12, 479501.

    • Search Google Scholar
    • Export Citation
  • Srock, A. F., and Bosart L. F. , 2009: Heavy precipitation associated with southern Appalachian cold-air damming and Carolina coastal frontogenesis in advance of weak landfalling Tropical Storm Marco (1990). Mon. Wea. Rev., 137, 24482470.

    • Search Google Scholar
    • Export Citation
  • Suzuki, O., Niino H. , Ohno H. , and Nirasawa H. , 2000: Tornado-producing mini supercells associated with Typhoon 9019. Mon. Wea. Rev., 128, 18681882.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., Edwards R. , Hart J. A. , Elmore K. L. , and Markowski P. , 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., and Zhang F. , 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Sippel J. A. , 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 115 11
PDF Downloads 265 83 6