Heavy Precipitation at the Alpine South Side and Saharan Dust over Central Europe: A Predictability Study Using TIGGE

Lars Wiegand School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Lars Wiegand in
Current site
Google Scholar
PubMed
Close
,
Arwen Twitchett School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Arwen Twitchett in
Current site
Google Scholar
PubMed
Close
,
Cornelia Schwierz Seminar for Statistics, ETH Zurich, Zurich, Switzerland

Search for other papers by Cornelia Schwierz in
Current site
Google Scholar
PubMed
Close
, and
Peter Knippertz School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Peter Knippertz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Around 26 May 2008 a pronounced potential vorticity (PV) streamer penetrated from the North Atlantic into the western Mediterranean Sea followed by widespread dust mobilization over the Maghreb region of northwest Africa and a subsequent northward transport into central Europe. At the same time, strong southerly flow over the Mediterranean Sea caused heavy precipitation and flooding at the windward side of the European Alps. Using continuous and feature-based error measures, as well as ensemble correlation techniques, this study investigates the forecast quality and predictability of synoptic and mesoscale aspects of this high-impact event in operational ensemble predictions from nine meteorological centers participating in The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) project. TIGGE is a recently established program providing ensemble forecasts in a standardized format, which allows for an exciting new multimodel approach to investigating the predictability of, for example, high-impact weather and its dynamics. The main conclusions from this study are that 1) the quality of the PV streamer forecasts degrades with lead time showing a general tendency toward too weak Rossby wave; 2) when focusing on the region around the streamer, most models show root-mean-square errors of the same magnitude or larger than the ensemble spread (underdispersive behavior); 3) errors are reduced by about 50% if the comparison is made to each center’s own analysis instead of the ECMWF analysis; 4) peak wind speeds over the Sahara tend to be underpredicted, with differences in model formulation dominating over differences in the representation of the PV streamer; and 5) ensemble-mean multimodel forecasts of 4-day accumulated precipitation appear accurate enough for a successful severe-weather warning.

Corresponding author address: Lars Wiegand, School of Earth and Environment, University of Leeds, LS92JT Leeds, United Kingdom. E-mail: l.wiegand@see.leeds.ac.uk

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

Around 26 May 2008 a pronounced potential vorticity (PV) streamer penetrated from the North Atlantic into the western Mediterranean Sea followed by widespread dust mobilization over the Maghreb region of northwest Africa and a subsequent northward transport into central Europe. At the same time, strong southerly flow over the Mediterranean Sea caused heavy precipitation and flooding at the windward side of the European Alps. Using continuous and feature-based error measures, as well as ensemble correlation techniques, this study investigates the forecast quality and predictability of synoptic and mesoscale aspects of this high-impact event in operational ensemble predictions from nine meteorological centers participating in The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) project. TIGGE is a recently established program providing ensemble forecasts in a standardized format, which allows for an exciting new multimodel approach to investigating the predictability of, for example, high-impact weather and its dynamics. The main conclusions from this study are that 1) the quality of the PV streamer forecasts degrades with lead time showing a general tendency toward too weak Rossby wave; 2) when focusing on the region around the streamer, most models show root-mean-square errors of the same magnitude or larger than the ensemble spread (underdispersive behavior); 3) errors are reduced by about 50% if the comparison is made to each center’s own analysis instead of the ECMWF analysis; 4) peak wind speeds over the Sahara tend to be underpredicted, with differences in model formulation dominating over differences in the representation of the PV streamer; and 5) ensemble-mean multimodel forecasts of 4-day accumulated precipitation appear accurate enough for a successful severe-weather warning.

Corresponding author address: Lars Wiegand, School of Earth and Environment, University of Leeds, LS92JT Leeds, United Kingdom. E-mail: l.wiegand@see.leeds.ac.uk

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Save
  • Appenzeller, C., and Davies H. C. , 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572.

  • Appenzeller, C., Davies H. , and Norton W. , 1996: Fragmentation of stratospheric intrusions. J. Geophys. Res., 101D, 14351456.

  • Atger, F., 1999: The skill of ensemble prediction systems. Mon. Wea. Rev., 127, 19411953.

  • Barkan, J., Alpert P. , Kutiel H. , and Kishcha P. , 2005: Synoptics of dust transportation days from Africa toward Italy and central Europe. J. Geophys. Res., 110D, D07208, doi:10.1029/2004JD005222.

    • Search Google Scholar
    • Export Citation
  • Berggren, R., Bolin B. , and Rossby C.-G. , 1949: An aerological study of zonal motion, its perturbations and break-down. Tellus, 1, 1437.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The Thorpex Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 10591072.

  • Bourke, W., Buizza R. , and Naughton M. , 2004: Performance of the ECMWF and the BoM ensemble prediction systems in the Southern Hemisphere. Mon. Wea. Rev., 132, 23382357.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Petroliagis T. , Palmer T. , Barkmeijer J. , Hamrud M. , Hollingsworth A. , Simmons A. , and Wedi N. , 1998: Impact of model resolution and ensemble size on the performance of an ensemble prediction system. Quart. J. Roy. Meteor. Soc., 124B, 19351960.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Houtekamer P. , Toth Z. , Pellerin G. , Wei M. , and Zhu Y. , 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097.

    • Search Google Scholar
    • Export Citation
  • Chomette, O., Legrand M. , and Marticorena B. , 1999: Determination of the wind speed threshold for the emission of desert dust using satellite remote sensing in the thermal infrared. J. Geophys. Res., 104, 31 20731 216.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., Schär C. , and Wernli H. , 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 16661689.

    • Search Google Scholar
    • Export Citation
  • Dirren, S., Didone M. , and Davies H. C. , 2003: Diagnosis of “forecast–analysis” differences of a weather prediction system. Geophys. Res. Lett., 30, 2600, doi:10.1029/2003GL017986.

    • Search Google Scholar
    • Export Citation
  • Fehlmann, R., Quadri C. , and Davies H. C. , 2000: An alpine rainstorm: Sensitivity to the mesoscale upper-level structure. Wea. Forecasting, 15, 428.

    • Search Google Scholar
    • Export Citation
  • Froude, L. S. R., 2010: TIGGE: Comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Wea. Forecasting, 25, 819836.

    • Search Google Scholar
    • Export Citation
  • Froude, L. S. R., Bengtsson L. , and Hodges K. I. , 2007: The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Mon. Wea. Rev., 135, 25452567.

    • Search Google Scholar
    • Export Citation
  • Hawblitzel, D. P., Zhang F. , Meng Z. , and Davis C. A. , 2007: Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10–13 June 2003. Mon. Wea. Rev., 135, 15441563.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., Hofstra N. , Tank A. M. G. K. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113D, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., and Davies H. C. , 2007: Upper-tropospheric flow features and the Alps: An overview. Quart. J. Roy. Meteor. Soc., 133, 847865, doi:10.1002/qj.69.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 121.

  • Hoskins, B. J., and Ambrizzi T. , 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., McIntyre M. E. , and Robertson A. W. , 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Iskenderian, H., 1995: A 10-year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns. J. Climate, 8, 16301637.

    • Search Google Scholar
    • Export Citation
  • Jenkner, J., Frei C. , and Schwierz C. , 2008: Quantile-based short-range QPF evaluation over Switzerland. Meteor. Z., 17, 827848, doi:10.1127/0941-2948/2008/0344.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., and Swinbank R. , 2009: Medium-range multimodel ensemble combination and calibration. Quart. J. Roy. Meteor. Soc., 135A, 777794, doi:10.1002/qj.383.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and Weickmann K. M. , 1992: Extratropical forcing of tropical Pacific convection during winter. Mon. Wea. Rev., 120, 19241938.

    • Search Google Scholar
    • Export Citation
  • Klein, H., and Coauthors, 2010: Saharan dust and ice nuclei over central Europe. Atmos. Chem. Phys., 10, 10 21110 221, doi:10.5194/acp-10-10211-2010.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2005: Tropical–extratropical interactions associated with an Atlantic tropical plume and subtropical jet streak. Mon. Wea. Rev., 133, 27592776.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Martin J. , 2005: Tropical plumes and precipitation in subtropical and tropical West Africa. Quart. J. Roy. Meteor. Soc., 131, 23372365.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Fink A. H. , 2006: Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Quart. J. Roy. Meteor. Soc., 132B, 11531177, doi:10.1256/qj.05.109.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Martin J. E. , 2007a: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Martin J. E. , 2007b: The role of dynamic and diabatic processes in the generation of cut-off lows over northwest Africa. Meteor. Atmos. Phys., 96, 319, doi:10.1007/s00703-006-0217-4.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and Bergametti G. , 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 41516 430.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. John Wiley and Sons, 336 pp.

  • Martius, O., Zenklusen E. , Schwierz C. , and Davies H. C. , 2006: Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 11491164, doi:10.1002/joc.1295.

    • Search Google Scholar
    • Export Citation
  • Martius, O., Schwierz C. , and Davies H. C. , 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879.

  • Massacand, A. C., Wernli H. , and Davies H. C. , 1998: Heavy precipitation on the alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 14351438.

    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., Wernli H. , and Davies H. C. , 2001: Influence of upstream diabatic heating upon an alpine event of heavy precipitation. Mon. Wea. Rev., 129, 28222828.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2009: Blocking predictability in operational medium-range ensemble forecasts. SOLA, 5, 113116, doi:10.2151/sola.2009–029.

    • Search Google Scholar
    • Export Citation
  • McGuirk, J. P., Thompson A. H. , and Smith N. R. , 1987: Moisture bursts over the tropical Pacific Ocean. Mon. Wea. Rev., 115, 787798.

  • McGuirk, J. P., Thompson A. H. , and Schaefer J. R. , 1988: An eastern Pacific tropical plume. Mon. Wea. Rev., 116, 25052521.

  • Palmer, T., Molteni F. , Mureau R. , Buizza R. , Chapelet P. , and Tribbia J. , 1992: Ensemble prediction. Seminar on Validation of Models over Europe, Vol. 1, ECMWF, 21–66. [Available from ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.]

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Bartholmes J. , Thielen J. , Cloke H. L. , Buizza R. , and de Roo A. , 2008: New dimensions in early flood warning across the globe using grand-ensemble weather predictions. Geophys. Res. Lett., 35, L10404, doi:10.1029/2008GL033837.

    • Search Google Scholar
    • Export Citation
  • Park, Y., Buizza R. , and Leutbecher M. , 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134, 20292050, doi:10.1002/qj.334.

    • Search Google Scholar
    • Export Citation
  • Richardson, D., Buizza R. , and Hagedorn R. , 2005: Final report of the 1st Workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE). WMO/TD-1273, WWRP/THORPEX Rep. 5, 39 pp.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1959: Current problems in meteorology. The Atmosphere and Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press, 9–50.

    • Search Google Scholar
    • Export Citation
  • Schepanski, K., Tegen I. , Laurent B. , Heinold B. , and Macke A. , 2007: A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys. Res. Lett., 34, L18803, doi:10.1029/2007GL030168.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., Dirren S. , and Davies H. C. , 2004: Forced waves on a zonally aligned jet stream. J. Atmos. Sci., 61, 7387.

  • Schwierz, C., Koellner-Heck P. , Mutter E. Z. , Bresch D. N. , Vidale P.-L. , Wild M. , and Schaer C. , 2010: Modelling European winter wind storm losses in current and future climate. Climatic Change, 101, 485514, doi:10.1007/s10584-009-9712-1.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and Coauthors, 2006: Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett., 33, L24817, doi:10.1029/2006GL027869.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1998: Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Quart. J. Roy. Meteor. Soc., 124A, 2751.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., Palmer A. S. , Schwierz C. , Schwikowski M. , and Wernli H. , 2006: The transport history of two Saharan dust events archived in an alpine ice core. Atmos. Chem. Phys., 6, 667688.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and Flocas H. A. , 1997: A case study of Saharan cyclogenesis. Mon. Wea. Rev., 125, 11471165.

  • Thorncroft, C. D., Hoskins B. J. , and McIntyre M. E. , 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., 1992: Quasi-stationary and transient periods in the Northern Hemisphere circulation series. J. Climate, 5, 12351247.

  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330.

  • Tracton, M. S., and Kalnay E. , 1993: Operational ensemble prediction at the National Meteorological Center—Practical aspects. Wea. Forecasting, 8, 379398.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., Medaglia C. M. , Dietrich S. , Mugnai A. , Panegrossi G. , Pinori S. , and Smith E. A. , 2005: The 9–10 November 2001 Algerian flood: A numerical study. Bull. Amer. Meteor. Soc., 86, 12291235.

    • Search Google Scholar
    • Export Citation
  • Wei, M., and Toth Z. , 2003: A new measure of ensemble performance: Perturbation versus error correlation analysis (PECA). Mon. Wea. Rev., 131, 15491565.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Toth Z. , Wobus R. , and Zhu Y. , 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and Sprenger M. , 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586.

    • Search Google Scholar
    • Export Citation
  • Ziehmann, C., 2001: Skill prediction of local weather forecasts based on the ECMWF ensemble. Nonlinear Processes Geophys., 8, 419428.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 651 405 138
PDF Downloads 85 23 0