On the Rapid Intensification of Hurricane Wilma (2005). Part I: Model Prediction and Structural Changes

Hua Chen Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Hua Chen in
Current site
Google Scholar
PubMed
Close
,
Da-Lin Zhang Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
,
James Carton Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by James Carton in
Current site
Google Scholar
PubMed
Close
, and
Robert Atlas NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Robert Atlas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a 72-h cloud-permitting numerical prediction of Hurricane Wilma (2005), covering its initial 18-h spinup, an 18-h rapid intensification (RI), and the subsequent 36-h weakening stage, is performed using the Weather Research Forecast Model (WRF) with the finest grid length of 1 km. The model prediction uses the initial and lateral boundary conditions, including the bogus vortex, that are identical to the Geophysical Fluid Dynamics Laboratory’s then-operational data, except for the time-independent sea surface temperature field. Results show that the WRF prediction compares favorably in many aspects to the best-track analysis, as well as satellite and reconnaissance flight-level observations. In particular, the model predicts an RI rate of more than 4 hPa h−1 for an 18-h period, with the minimum central pressure of less than 889 hPa. Of significance is that the model captures a sequence of important inner-core structural variations associated with Wilma’s intensity changes, namely, from a partial eyewall open to the west prior to RI to a full eyewall at the onset of RI, rapid eyewall contraction during the initial spinup, the formation of double eyewalls with a wide moat area in between during the most intense stage, and the subsequent eyewall replacement leading to the weakening of Wilma. In addition, the model reproduces the boundary layer growth up to 750 hPa with an intense inversion layer above in the eye. Recognizing that a single case does not provide a rigorous test of the model predictability due to the stochastic nature of deep convection, results presented herein suggest that it is possible to improve forecasts of hurricane intensity and intensity changes, and especially RI, if the inner-core structural changes and storm size could be reasonably predicted in an operational setting using high-resolution cloud-permitting models with realistic initial conditions and model physical parameterizations.

Corresponding author address: Dr. Da-Lin Zhang, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742-2425. E-mail: dalin@atmos.umd.edu

Abstract

In this study, a 72-h cloud-permitting numerical prediction of Hurricane Wilma (2005), covering its initial 18-h spinup, an 18-h rapid intensification (RI), and the subsequent 36-h weakening stage, is performed using the Weather Research Forecast Model (WRF) with the finest grid length of 1 km. The model prediction uses the initial and lateral boundary conditions, including the bogus vortex, that are identical to the Geophysical Fluid Dynamics Laboratory’s then-operational data, except for the time-independent sea surface temperature field. Results show that the WRF prediction compares favorably in many aspects to the best-track analysis, as well as satellite and reconnaissance flight-level observations. In particular, the model predicts an RI rate of more than 4 hPa h−1 for an 18-h period, with the minimum central pressure of less than 889 hPa. Of significance is that the model captures a sequence of important inner-core structural variations associated with Wilma’s intensity changes, namely, from a partial eyewall open to the west prior to RI to a full eyewall at the onset of RI, rapid eyewall contraction during the initial spinup, the formation of double eyewalls with a wide moat area in between during the most intense stage, and the subsequent eyewall replacement leading to the weakening of Wilma. In addition, the model reproduces the boundary layer growth up to 750 hPa with an intense inversion layer above in the eye. Recognizing that a single case does not provide a rigorous test of the model predictability due to the stochastic nature of deep convection, results presented herein suggest that it is possible to improve forecasts of hurricane intensity and intensity changes, and especially RI, if the inner-core structural changes and storm size could be reasonably predicted in an operational setting using high-resolution cloud-permitting models with realistic initial conditions and model physical parameterizations.

Corresponding author address: Dr. Da-Lin Zhang, Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742-2425. E-mail: dalin@atmos.umd.edu
Save
  • Bender, M. A., Ginis I. , and Kurihara Y. , 1993: Numerical simulations of tropical cyclone–ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23 24523 263.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., and Willoughby H. E. , 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957.

  • Blackwell, K. G., 2000: The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev., 128, 40024016.

    • Search Google Scholar
    • Export Citation
  • Blanton, C. E., 2008: Polygonal eyewalls in a 2 km WRF simulation of Wilma (2005). Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 7A.6. [Available online at http://ams.confex.com/ams/pdfpapers/138713.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and Hazen D. S. , 1989: Doppler-radar analysis of a tropical cyclone over land: Hurricane Alicia (1983) in Oklahoma. Mon. Wea. Rev., 117, 25942611.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Tao W. , 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., Molinari J. , and Black M. L. , 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Bosart L. F. , 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 18591881.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Bosart L. F. , 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Wang W. , Dudhia J. , and Torn R. , 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., Frank W. M. , Holland G. J. , Jarrell J. D. , and Southern R. L. , 1987: A Global View of Tropical Cyclones. University of Chicago Press, 185 pp.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Fortner, L. E., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39, 633639.

  • Guimond, S. R., Heymsfield G. M. , and Turk F. J. , 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and Schubert W. H. , 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403.

  • Hack, J. J., and Schubert W. H. , 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Halverson J. B. , Simpson J. , Tian L. , and Bui T. P. , 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330.

    • Search Google Scholar
    • Export Citation
  • Hogsett, W., and Zhang D.-L. , 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 26782696.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and DeMaria M. , 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., Stout J. , and Halverson J. B. , 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and Zhang D.-L. , 2009: An analytical model for the rapid intensification for tropical cyclones. Quart. J. Roy. Meteor. Soc., 135, 13361349.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and Zhang D.-L. , 2010: A piecewise potential vorticity inversion algorithm and its application to hurricane inner-core anomalies. J. Atmos. Sci., 67, 26162631.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., Chen H. , and Zhang D.-L. , 2010: An examination of the pressure–wind relationship in intense tropical cyclones. Wea. Forecasting, 25, 895907.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and Dougherty F. C. , 2006: The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon. Wea. Rev., 134, 19872008.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33, 940958.

  • Kurihara, Y., Bender M. A. , and Ross R. J. , 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045.

    • Search Google Scholar
    • Export Citation
  • Lee, W., and Bell M. M. , 2007: Rapid intensification, eyewall contraction, and breakdown of Hurricane Charley (2004) near landfall. Geophys. Res. Lett., 34, L02802, doi:10.1029/2006GL027889.

    • Search Google Scholar
    • Export Citation
  • Leipper, D., 1967: Observed ocean conditions and hurricane Hilda, 1964. J. Atmos. Sci., 24, 182196.

  • Li, X., and Pu Z. , 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Zhang D.-L. , and Yau M. K. , 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Zhang D.-L. , and Yau M. K. , 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616.

    • Search Google Scholar
    • Export Citation
  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20, 138150.

  • Marks, F. D., Jr., and Houze R. A. Jr., 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and Houze R. A. Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Report of the Fifth Prospectus Development Team to the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79, 305323.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Vollaro D. , 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885.

  • Montgomery, M. T., and Kallenbach R. J. , 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Parrish, J. R., Burpee R. W. , Marks F. D. , and Grebe R. , 1982: Rainfall patterns observed by digitized radar during the landfall of Hurricane Frederic (1979). Mon. Wea. Rev., 110, 19331944.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., Blake E. S. , Cobb H. D. III, and Roberts D. P. , 2006: Tropical cyclone report: Hurricane Wilma, 15–25 October 2005. NOAA/NHC, 27 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL252005_Wilma.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419.

  • Reasor, P. D., Eastin M. D. , and Gamache J. F. , 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., Chen S. , Tenerelli J. , and Willoughby H. E. , 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., Tao W.-K. , Lau W. K. , and Atlas R. , 2010: Predicting tropical cyclogenesis with a global mesoscale model: Hierarchical multiscale interactions during the formation of Tropical Cyclone Nargis (2008). J. Geophys. Res., 115, D14102, doi:10.1029/2009JD013140.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2005: A description of the Advanced Research WRF version 3. NCAR Tech. Note 475+STR, 125 pp.

  • Squires, K., and Businger S. , 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 17061726.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183191.

  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067.

  • Willoughby, H. E., Clos J. A. , and Shoreibah M. , 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., Marks F. D. Jr., and Feinberg R. J. , 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, R., 1963: A dynamical theory of spiral rain band in tropical cyclones. Tellus, 15, 153161.

  • Yang, M.-J., Zhang D.-L. , and Huang H.-L. , 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 30953115.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and Wang X. , 2003: Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20, 711725.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and Kieu C. Q. , 2006: Potential vorticity diagnosis of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 28982914.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Liu Y. , and Yau M. K. , 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763.

    • Search Google Scholar
    • Export Citation
  • Zhong, W., Zhang D.-L. , and Lu H. , 2009: A theory for mixed vortex Rossby–gravity waves in tropical cyclones. J. Atmos. Sci., 66, 33663381.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and Zhang D.-L. , 2006a: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to cloud microphysical processes. J. Atmos. Sci., 63, 109126.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and Zhang D.-L. , 2006b: The impact of the storm-induced SST cooling on hurricane intensity. Adv. Atmos. Sci., 23, 1422.

  • Zhu, T., Zhang D.-L. , and Weng F. , 2002: Impact of the Advanced Microwave Sounding Unit measurements on hurricane prediction. Mon. Wea. Rev., 130, 24162432.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., Zhang D.-L. , and Weng F. , 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 919 435 81
PDF Downloads 658 179 38