• Andra, D. L., Jr., 1997: The origin and evolution of the WSR-88D mesocyclone recognition nomogram. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 364–365.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Bothwell, P. D., Hart J. A. , and Thompson R. L. , 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.]

  • Brady, R. H., and Szoke E. J. , 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843856.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., Doswell C. A. III, and Kay M. P. , 2003: Climatological estimates for local daily tornado probability for the United States. Wea. Forecasting, 18, 626640.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639.

    • Search Google Scholar
    • Export Citation
  • Collins, W. G., Paxton C. H. , and Golden J. H. , 2000: The 12 July 1995 Pinellas County, Florida, tornado/waterspout. Wea. Forecasting, 15, 122134.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., Alberty R. L. , and Burgess D. W. , 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., Mercer A. E. , Choi J. , and Allen J. S. , 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and Burgess D. W. , 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501.

  • Doswell, C. A., III, and Burgess D. W. , 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79. Amer. Geophys. Union, 161–172..

  • Doswell, C. A., III, Brooks H. E. , and Kay M. P. , 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595.

    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and Gallus W. A. Jr., 2010: Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., Dean A. R. , Thompson R. L. , and Smith B. T. , 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, in press.

  • Fujita, T. T., 1978: Manual of downburst identification for project NIMROD. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp.

  • Gagan, J. P., Gerard A. E. , and Gordon J. , 2010: A historical and statistical comparison of “Tornado Alley” to “Dixie Alley.” Natl. Wea. Dig., 34 (2), 145156.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., Snook N. A. , and Johnson E. V. , 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113.

    • Search Google Scholar
    • Export Citation
  • Grams, J. S., Thompson R. L. , Snively D. V. , Prentice J. A. , Hodges G. M. , and Reames L. J. , 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1988: Improving the watch/warning program through use of significant event data. Preprints, 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., 165–168.

  • Hocker, J. E., and Basara J. B. , 2008a: A 10-year spatial climatology of squall line storms across Oklahoma. Int. J. Climatol., 28, 765775.

    • Search Google Scholar
    • Export Citation
  • Hocker, J. E., and Basara J. B. , 2008b: A Geographic Information Systems–based analysis of supercells across Oklahoma from 1994 to 2003. J. Appl. Meteor. Climatol., 47, 15181538.

    • Search Google Scholar
    • Export Citation
  • Imy, D. A., Pence K. J. , and Doswell C. A. III, 1992: On the need for volumetric radar data when issuing severe thunderstorm and tornado warnings. Natl. Wea. Dig., 17 (4), 217.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1984: A synoptic climatology of northwest-flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112, 449464.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Hirt W. D. , 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249.

  • Kis, A. K., and Straka J. M. , 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561.

  • Lemon, L. R., 1977: New severe thunderstorm radar identification techniques and warning criteria: A preliminary report. NOAA Tech. Memo. NWS NSSFC-1, 60 pp.

  • Schneider, R. S., and Dean A. R. , 2008: A comprehensive 5-year severe storm environment climatology for the continental United States. Preprints, 24th Conf. Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 16A.4. [Available online at http://ams.confex.com/ams/pdfpapers/141748.pdf.]

  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 177 pp.

  • Smith, B. T., Guyer J. L. , and Dean A. R. , 2008: The climatology, convective mode, and mesoscale environment of cool season severe thunderstorms in the Ohio and Tennessee Valleys, 1995–2006. Preprints, 24th Conf. Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 13B.7. [Available online at http://ams.confex.com/ams/pdfpapers/141968.pdf.]

  • Smith, B. T., Winters A. C. , Mead C. M. , Dean A. R. , and Castellanos T. E. , 2010: Measured severe wind gust climatology of thunderstorms for the contiguous United States, 2003–2009. Preprints, 25th Conf. Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 16B.3. [Available online at http://ams.confex.com/ams/pdfpapers/175594.pdf.]

  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., Edwards R. , Hart J. A. , Elmore K. L. , and Markowski P. , 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., Smith B. T. , Grams J. S. , Dean A. R. , and Broyles C. , 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting,27, 1136–1154.

  • Trapp, R. J., and Weisman M. L. , 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Tessendorf S. A. , Godfrey E. S. , and Brooks H. E. , 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Wheatley D. M. , Atkins N. T. , Przybylinski R. W. , and Wolf R. , 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Trapp R. J. , 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., Hart J. A. , and Janish P. R. , 2002: An examination of severe thunderstorm wind report climatology: 1970–1999. Preprints, 21st Conf. Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 446–449.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 55
PDF Downloads 48 48 48

Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part I: Storm Classification and Climatology

View More View Less
  • 1 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
  • | 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.

Corresponding author address: Bryan T. Smith, NOAA/NWS/NCEP/Storm Prediction Center, Ste. 2300, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bryan.smith@noaa.gov

Abstract

Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.

Corresponding author address: Bryan T. Smith, NOAA/NWS/NCEP/Storm Prediction Center, Ste. 2300, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bryan.smith@noaa.gov
Save