• Bishop, C. M., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Bluestein, H. B., French M. M. , PopStefanija I. , Bluth R. T. , and Knorr J. B. , 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and Erickson S. , 2010: Tornadoes without NWS warning. Wea. Forecasting, 25, 159172.

  • Brown, R. A., Lemon L. R. , and Burgess D. W. , 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938.

  • Brown, R. A., Wood V. T. , and Sirmans D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd. ed. Dover, 562 pp.

  • Elmore, K. M., Albo E. D. , Goodrich R. K. , and Peters D. J. , 1994: NASA/NCAR airborne and ground-based wind shear studies. Final Rep., Contract NCC1-155, 343 pp.

  • Liu, S., Xue M. , and Xu Q. , 2007: Using wavelet analysis to detect tornadoes from Doppler radar radial-velocity observations. J. Atmos. Oceanic Technol., 24, 344359.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Richardson Y. P. , 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

  • Mather, P. M., 2004: Computer Processing of Remotely-Sensed Images: An Introduction. 3rd ed. Wiley, 324 pp.

  • Mitchell, E. D., and Elmore K. L. , 1998: A technique for identifying regions of high shear associated with mesocyclones and tornadic vortex signatures. Preprints, 14th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 312–315.

  • Mitchell, E. D., Vasiloff S. V. , Stumpf G. J. , Witt A. , Eilts M. D. , Johnson J. T. , and Thomas K. W. , 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366.

    • Search Google Scholar
    • Export Citation
  • Rankine, W. J. M., 1901: A Manual of Applied Mechanics. 16th ed. Charles Griff and Co., 680 pp.

  • Smith, T. M., and Elmore K. L. , 2004: The use of radial velocity derivatives to diagnose rotation and divergence. Preprints, 11th Conf. on Aviation, Range and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6. [Available online at http://ams.confex.com/ams/pdfpapers/81827.pdf.]

  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Stumpf G. J. , and Manross K. L. , 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Yu T.-Y. , Yeary M. , Shapiro A. , Nemati S. , Foster M. , Andra D. L. , and Jain M. , 2008: Tornado detection using a neurofuzzy system to integrate shear and spectral signatures. J. Atmos. Oceanic Technol., 25, 11361148.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. W. , Johnson J. T. , and Thomas K. W. , 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and Brown R. A. , 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938.

    • Search Google Scholar
    • Export Citation
  • Yu, T.-Y., Wang Y. , Shapiro A. , Yeary M. B. , Zrnić D. S. , and Doviak R. J. , 2007: Characterization of tornado spectral signatures using higher-order spectra. J. Atmos. Oceanic Technol., 24, 19972013.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 218 0
PDF Downloads 258 166 0

Range-Correcting Azimuthal Shear in Doppler Radar Data

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 5 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

The current tornado detection algorithm (TDA) used by the National Weather Service produces a large number of false detections, primarily because it calculates azimuthal shear in a manner that is adversely impacted by noisy velocity data and range-degraded velocity signatures. Coincident with the advent of new radar-derived products and ongoing research involving new weather radar systems, the National Severe Storms Laboratory is developing an improved TDA. A primary component of this algorithm is the local, linear least squares derivatives (LLSD) azimuthal shear field. The LLSD method incorporates rotational derivatives of the velocity field and is affected less strongly by noisy velocity data in comparison with traditional “peak to peak” azimuthal shear calculations. LLSD shear is generally less range dependent than peak-to-peak shear, although some range dependency is unavoidable. The relationship between range and the LLSD shear values of simulated circulations was examined to develop a range correction for LLSD shear. A linear regression and artificial neural networks (ANNs) were investigated as range-correction models. Both methods were used to produce fits for the simulated shear data, although the ANN excelled as it could capture the nonlinear nature of the data. The range-correction methods were applied to real radar data from tornadic and nontornadic events to measure the capacity of the corrected shear to discriminate between tornadic and nontornadic circulations. The findings presented herein suggest that both methods increased shear values during tornadic periods by nearly an order of magnitude, facilitating differentiation between tornadic and nontornadic scans in tornadic events.

Corresponding author address: Jennifer F. Newman, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: jennifer.newman@ou.edu

Abstract

The current tornado detection algorithm (TDA) used by the National Weather Service produces a large number of false detections, primarily because it calculates azimuthal shear in a manner that is adversely impacted by noisy velocity data and range-degraded velocity signatures. Coincident with the advent of new radar-derived products and ongoing research involving new weather radar systems, the National Severe Storms Laboratory is developing an improved TDA. A primary component of this algorithm is the local, linear least squares derivatives (LLSD) azimuthal shear field. The LLSD method incorporates rotational derivatives of the velocity field and is affected less strongly by noisy velocity data in comparison with traditional “peak to peak” azimuthal shear calculations. LLSD shear is generally less range dependent than peak-to-peak shear, although some range dependency is unavoidable. The relationship between range and the LLSD shear values of simulated circulations was examined to develop a range correction for LLSD shear. A linear regression and artificial neural networks (ANNs) were investigated as range-correction models. Both methods were used to produce fits for the simulated shear data, although the ANN excelled as it could capture the nonlinear nature of the data. The range-correction methods were applied to real radar data from tornadic and nontornadic events to measure the capacity of the corrected shear to discriminate between tornadic and nontornadic circulations. The findings presented herein suggest that both methods increased shear values during tornadic periods by nearly an order of magnitude, facilitating differentiation between tornadic and nontornadic scans in tornadic events.

Corresponding author address: Jennifer F. Newman, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: jennifer.newman@ou.edu
Save