• Bluestein, H. B., Weiss C. C. , and Pazmany A. L. , 2004: The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations. Mon. Wea. Rev., 132, 23252337.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., French M. M. , Tanamachi R. L. , Frasier S. , Hardwick K. , Junyent F. , and Pazmany A. , 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543.

    • Search Google Scholar
    • Export Citation
  • Bodine, D., Kumjian M. R. , Smith A. J. , Palmer R. D. , Ryzhkov A. V. , and Heinselman P. L. , 2011: High-resolution polarimetric observations of an EF4 tornado on 10 May 2010 from OU-PRIME. Preprints, 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 3B.4. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper182431.html.]

  • Brown, R. A., Lemon L. R. , and Burgess D. W. , 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938.

  • Brown, R. A., Flickinger B. A. , Forren E. , Schultz D. M. , Sirmans D. , Spencer P. L. , Wood V. T. , and Ziegler C. L. , 2005a: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 314.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Steadham R. M. , Flickinger B. A. , Lee R. R. , Sirmans D. , and Wood V. T. , 2005b: New WSR-88D volume coverage pattern 12: Results of field tests. Wea. Forecasting, 20, 385393.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and Baxter M. A. , 2011: Radar tornadic debris signatures on 27 April 2011. Electron. J. Oper. Meteor., 12 (7), 16.

  • Davison, A. C., and Hinkley D. V. , 1997: Bootstrap Methods and Their Application. Cambridge University Press, 582 pp.

  • Doviak, R. J., Bringi V. , Ryzhkov A. , Zahrai A. , and Zrnić D. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Alexander C. R. , Wurman J. M. , and Wicker L. J. , 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126.

  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Magsig, M. A., and Snow J. T. , 1998: Long-distance debris transport by tornadic thunderstorms. Part I: The 7 May 1995 supercell thunderstorm. Mon. Wea. Rev., 126, 14301449.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. R., Forbes G. S. , and Marshall T. P. , 2004: The enhanced Fujita (EF) scale. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 3B.2. [Available online at http://ams.confex.com/ams/pdfpapers/81090.pdf.]

  • Palmer, R. D., and Coauthors, 2011: The 10 May 2010 tornado outbreak in central Oklahoma: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and Ryzhkov A. , 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 1385–1403.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., Burgess D. , Zrnić D. , Smith T. , and Giangrande S. , 2002: Polarimetric analysis of a 3 May 1999 tornado. Preprints, 21th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 14.2. [Available online at http://ams.confex.com/ams/pdfpapers/47348.pdf.]

  • Ryzhkov, A., Schuur T. J. , Burgess D. W. , and Zrnić D. S. , 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570.

  • Schwarz, C. M., and Burgess D. W. , 2011: Supercell polarimetric signatures at X-band: Data from VORTEX2. Preprints, 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 7B.4. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191298.html.]

  • Snow, J. T., 1984: On the formation of particle sheaths in columnar vortices. J. Atmos. Sci., 41, 24772491.

  • Snow, J. T., Wyatt A. L. , McCarthy A. K. , and Bishop E. K. , 1995: Fallout of debris from tornadic thunderstorms: A historical perspective and two examples from VORTEX. Bull. Amer. Meteor. Soc., 76, 17771790.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., Bluestein H. B. , Zhang G. , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Atkins N. T. , and Wurman J. , 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258.

    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Wind Science and Engineering Center Tech. Rep., Texas Tech University, 15 pp + 3 appendixes. [Available online at http://www.depts.ttu.edu/weweb/EFScale.pdf.]

  • Wurman, J., and Gill S. , 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Straka J. M. , and Rasmussen E. N. , 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777.

  • Zrnić, D. S., and Ryzhkov A. V. , 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 508 349 5
PDF Downloads 442 318 4

Tornado Damage Estimation Using Polarimetric Radar

View More View Less
  • 1 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 4 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 5 Advanced Radar Research Center, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

This study investigates the use of tornadic debris signature (TDS) parameters to estimate tornado damage severity using Norman, Oklahoma (KOUN), polarimetric radar data (polarimetric version of the Weather Surveillance Radar-1988 Doppler radar). Several TDS parameters are examined, including parameters based on the 10th or 90th percentiles of polarimetric variables (lowest tilt TDS parameters) and TDS parameters based on the TDS volumetric coverage (spatial TDS parameters). Two highly detailed National Weather Service (NWS) damage surveys are compared to TDS parameters. The TDS parameters tend to be correlated with the enhanced Fujita scale (EF) rating. The 90th percentile reflectivity, TDS height, and TDS volume increase during tornado intensification and decrease during tornado dissipation. For 14 tornado cases, the maximum or minimum TDS parameter values are compared to the tornado’s EF rating. For tornadoes with a higher EF rating, higher maximum values of the 90th percentile ZHH, TDS height, and volume, as well as lower minimum values of 10th percentile ρHV and ZDR, are observed. Maxima in spatial TDS parameters are observed after periods of severe, widespread tornado damage for violent tornadoes. This paper discusses how forecasters could use TDS parameters to obtain near-real-time information about tornado damage severity and spatial extent.

Corresponding author address: David Bodine, School of Meteorology, University of Oklahoma, Ste. 5900, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bodine@ou.edu

Abstract

This study investigates the use of tornadic debris signature (TDS) parameters to estimate tornado damage severity using Norman, Oklahoma (KOUN), polarimetric radar data (polarimetric version of the Weather Surveillance Radar-1988 Doppler radar). Several TDS parameters are examined, including parameters based on the 10th or 90th percentiles of polarimetric variables (lowest tilt TDS parameters) and TDS parameters based on the TDS volumetric coverage (spatial TDS parameters). Two highly detailed National Weather Service (NWS) damage surveys are compared to TDS parameters. The TDS parameters tend to be correlated with the enhanced Fujita scale (EF) rating. The 90th percentile reflectivity, TDS height, and TDS volume increase during tornado intensification and decrease during tornado dissipation. For 14 tornado cases, the maximum or minimum TDS parameter values are compared to the tornado’s EF rating. For tornadoes with a higher EF rating, higher maximum values of the 90th percentile ZHH, TDS height, and volume, as well as lower minimum values of 10th percentile ρHV and ZDR, are observed. Maxima in spatial TDS parameters are observed after periods of severe, widespread tornado damage for violent tornadoes. This paper discusses how forecasters could use TDS parameters to obtain near-real-time information about tornado damage severity and spatial extent.

Corresponding author address: David Bodine, School of Meteorology, University of Oklahoma, Ste. 5900, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bodine@ou.edu
Save