• Andra, D. L., Jr., 1997: The origin and evolution of the WSR-88D mesocyclone recognition nomogram. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 364–365.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Bothwell, P. D., Hart J. A. , and Thompson R. L. , 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.]

  • Brooks, H. E., Doswell C. A. III, and Kay M. P. , 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., Smith T. M. , Lakshmanan V. , Brooks H. E. , and Ortega K. L. , 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and Stensrud D. J. , 2004: Interpreting the climatology of derechos. Wea. Forecasting, 19, 595605.

  • Doswell, C. A., III, Brooks H. E. , and Kay M. P. , 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1982: A synoptic climatology of northwest flow severe weather outbreaks. Part I: Nature and significance. Mon. Wea. Rev., 110, 16531663.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Hirt W. D. , 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249.

  • Schaefer, J. T., and Edwards R. , 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

  • Schneider, R. S., and Dean A. R. , 2008: A comprehensive 5-year severe storm environment climatology for the continental United States. Preprints, 24th Conf. Severe Local Storms, Savannah GA, Amer. Meteor. Soc., 16A.4. [Available online at http://ams.confex.com/ams/pdfpapers/141748.pdf.]

  • Schoen, J. M., and Ashley W. S. , 2011: A climatology of fatal convective wind events by storm type. Wea. Forecasting, 26, 109121.

  • Smith, B. T., Thompson R. L. , Grams J. S. , Broyles C. , and Brooks H. E. , 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Tessendorf S. A. , Godfrey E. S. , and Brooks H. E. , 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Wheatley D. M. , Atkins N. T. , Przybylinski R. W. , and Wolf R. , 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 11311143.

  • Weiss, S. J., Hart J. A. , and Janish P. R. , 2002: An examination of severe thunderstorm wind report climatology: 1970–1999. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 11B.2. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47494.htm.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 213 1
PDF Downloads 256 179 1

Measured Severe Convective Wind Climatology and Associated Convective Modes of Thunderstorms in the Contiguous United States, 2003–09

View More View Less
  • 1 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
  • | 2 University of Florida, Gainesville, Florida
  • | 3 University of Wisconsin—Madison, Madison, Wisconsin
  • | 4 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
Restricted access

Abstract

A severe thunderstorm wind gust climatology spanning 2003–09 for the contiguous United States is developed using measured Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS) wind gusts. Archived severe report information from the National Climatic Data Center publication Storm Data and single-site volumetric radar data are used to identify severe wind gust observations [≥50 kt (25.7 m s−1)] associated with thunderstorms and to classify the convective mode of the storms. The measured severe wind gust distribution, comprising only 2% of all severe gusts, is examined with respect to radar-based convective modes. The convective mode scheme presented herein focuses on three primary radar-based storm categories: supercell, quasi-linear convective systems (QLCSs), and disorganized. Measured severe gust frequency revealed distinct spatial patterns, where the high plains received the greatest number of gusts and occurred most often in the late spring and summer months. Severe wind gusts produced by supercells were most frequent over the plains, while those from QLCS gusts were most frequent in the plains and Midwest. Meanwhile, disorganized storms produced most of their severe gusts in the plains and Intermountain West. A reverse spatial distribution signal exists in the location between the maximum measured severe wind gust corridor located over the high plains and the maximum in all severe thunderstorm wind reports from Storm Data, located near and west of the southern Appalachians.

Corresponding author address: Bryan T. Smith, NOAA/NWS/NCEP/Storm Prediction Center, Ste. 2300, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bryan.smith@noaa.gov

Abstract

A severe thunderstorm wind gust climatology spanning 2003–09 for the contiguous United States is developed using measured Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS) wind gusts. Archived severe report information from the National Climatic Data Center publication Storm Data and single-site volumetric radar data are used to identify severe wind gust observations [≥50 kt (25.7 m s−1)] associated with thunderstorms and to classify the convective mode of the storms. The measured severe wind gust distribution, comprising only 2% of all severe gusts, is examined with respect to radar-based convective modes. The convective mode scheme presented herein focuses on three primary radar-based storm categories: supercell, quasi-linear convective systems (QLCSs), and disorganized. Measured severe gust frequency revealed distinct spatial patterns, where the high plains received the greatest number of gusts and occurred most often in the late spring and summer months. Severe wind gusts produced by supercells were most frequent over the plains, while those from QLCS gusts were most frequent in the plains and Midwest. Meanwhile, disorganized storms produced most of their severe gusts in the plains and Intermountain West. A reverse spatial distribution signal exists in the location between the maximum measured severe wind gust corridor located over the high plains and the maximum in all severe thunderstorm wind reports from Storm Data, located near and west of the southern Appalachians.

Corresponding author address: Bryan T. Smith, NOAA/NWS/NCEP/Storm Prediction Center, Ste. 2300, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bryan.smith@noaa.gov
Save