• Adler, R. F., and Fenn D. D. , 1979a: Thunderstorm intensity as determined by satellite data. J. Appl. Meteor., 18, 502517.

  • Adler, R. F., and Fenn D. D. , 1979b: Thunderstorm vertical velocities estimated from satellite data. J. Atmos. Sci., 36, 17471754.

  • Adler, R. F., and Fenn D. D. , 1981: Satellite-observed cloud-top height changes in tornadic thunderstorms. J. Appl. Meteor., 20, 13691375.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Mack R. A. , 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43, 19451960.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Markus M. J. , and Fenn D. D. , 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113, 769781.

    • Search Google Scholar
    • Export Citation
  • Arnold, D. L., 2008: Severe deep moist convective storms: Forecasting and mitigation. Geogr. Compass, 2, 3066.

  • Bedka, K. M., and Mecikalski J. R. , 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 17611772.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., Mecikalski J. R. , MacKenzie W. M. , Bedka K. M. , and Nair U. S. , 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113, D20207, doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Bikos, D., Weaver J. F. , and Motta B. , 2002: A satellite perspective of the 3 May 1999 Great Plains tornado outbreak within Oklahoma. Wea. Forecasting, 17, 635646.

    • Search Google Scholar
    • Export Citation
  • Bikos, D., Weaver J. F. , and Braun J. , 2006: The role of GOES satellite imagery in tracking low-level moisture. Wea. Forecasting, 21, 232241.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., and Jones C. , 2001: A satellite method to identify structural properties of mesoscale convective systems based on the Maximum Spatial Correlation Tracking Technique (MASCOTTE). J. Appl. Meteor., 40, 16831701.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., Smith T. , Lakshmanan V. , Brooks H. , and Ortega K. , 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1985: The operational meteorology of convective weather. Vol. II: Storm scale analysis. NOAA Tech. Memo. ERL ESG-15, 240 pp. [Available from National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072.]

  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., and Cartarlis C. , 2001: Monitoring mesoscale convective cloud systems associated with heavy storms with the use of Meteosat imagery. J. Appl. Meteor., 40, 491512.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., and Cartarlis C. , 2005: Application of an automated cloud-tracking algorithm on satellite imagery for tracking and monitoring small mesoscale convective cloud systems. Int. J. Remote Sens., 26, 16771698.

    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and Clark R. A. , 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100, 548552.

  • Johns, R. H., and Doswell C. A. III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612.

  • Lakshmanan, V., Smith T. , Hondl K. , Stumpf G. J. , and Witt A. , 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity and derived products. Wea. Forecasting, 21, 802823.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Fritz A. , Smith T. , Hondl K. , and Stumpf G. J. , 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor., 46, 288305.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Stumpf G. J. , and Hondl K. , 2007b: The Warning Decision Support System-Integrated Information. Wea. Forecasting, 22, 596612.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Bedka K. M. , 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Purdom J. F. W. , 1994: Introducing GOES-I: The first of a new generation of Geostationary Observational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757781.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., 2001: Severe local storms forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

  • Moller, A. R., Doswell C. A. III, Foster M. P. , and Woodall G. R. , 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347.

    • Search Google Scholar
    • Export Citation
  • Morel, C., and Senesi S. , 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971.

    • Search Google Scholar
    • Export Citation
  • Mueller, C., Saxen T. , Roberts R. , Wilson J. , Betancourt T. , Dettling S. , Oien N. , and Yee J. , 2003: NCAR Auto-Nowcast System. Wea. Forecasting, 18, 545561.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and Adler R. F. , 1981: Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20, 288300.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., Smith T. M. , and Stumpf G. J. , 2006: Verification of multi-sensor, multi-radar hail diagnosis techniques. Preprints, Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.1. [Available online at https://ams.confex.com/ams/pdfpapers/104885.pdf.]

  • Ortega, K. L., Smith T. M. , Manross K. L. , Scharfenberg K. A. , Witt A. , Kolodziej A. G. , and Gourley J. J. , 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530.

    • Search Google Scholar
    • Export Citation
  • Pautz, M., 1971: Meso-scale analysis and forecasting. Technical Procedures Branch, Weather Analysis and Forecasting Division, National Weather Service/NOAA, 39 pp.

  • Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances—A robust alternative to brightness temperatures. Part I: Theory. J. Appl. Meteor. Climatol., 49, 19922012.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1971: Satellite imagery and severe weather warnings. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 120–137.

  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

  • Purdom, J. F. W., 1986: The development and evolution of deep convection. Precipitation Connection, Vol. 2, Satellite Imagery Interpretation for Forecasters, National Weather Association, 4-a-1–4-a-8. [Available from NWA, 4400 Stamp Rd., No. 404, Temple Hills, MD 20748.]

  • Roberts, R. D., and Rutledge S. , 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., Cronce L. M. , Feltz W. F. , Bedka K. M. , Pavolonis M. J. , and Heidinger A. K. , 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., Hartung D. C. , Feltz W. F. , Cronce L. M. , and Lakshmanan V. , 2013: A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection. J. Atmos. Oceanic Technol., 30, 510525.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Smith T. M. , and Hocker J. , 2004: New hail diagnostic parameters derived by integrating multiple radars and multiple sensors. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P7.8. [Available online at https://ams.confex.com/ams/pdfpapers/88063.pdf.]

  • Suchman, D., Auvine B. , and Hinton B. , 1981: Determining economic benefits of satellite data in short-range forecasting. Bull. Amer. Meteor. Soc., 62, 14581465.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., Machado L. A. T. , Laurent H. , and Velasco I. , 2008: Forecasting and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Hobbs P. V. , 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 483 pp.

  • Weaver, J. F., and Purdom J. F. W. , 1995: An interesting mesoscale storm–environment interaction observed just prior to changes in severe storm behavior. Wea. Forecasting, 10, 449453.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., Purdom J. F. W. , and Smith S. B. , 1994: Comments on “Nowcasts of thunderstorm initiation and evolution.” Wea. Forecasting, 9, 658662.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., Dostalek J. F. , Motta B. C. , and Purdom J. F. W. , 1999: Severe thunderstorms on 31 May 1996: A satellite training case. Natl. Wea. Dig., 23 (4), 319.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Witt, A., Eilts M. D. , Stumpf G. J. , Johnson J. T. , Mitchell E. D. W. , and Thomas K. W. , 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell J. E. D. W. , Johnson J. T. , and Thomas K. W. , 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., Mannstein H. , and Tafferner A. , 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101, 191210.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 142 10
PDF Downloads 94 50 0

An Intercomparison of UW Cloud-Top Cooling Rates with WSR-88D Radar Data

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

The University of Wisconsin Convective Initiation (UWCI) algorithm utilizes geostationary IR satellite data to compute cloud-top cooling (UW-CTC) rates and assign CI nowcasts to vertically growing clouds. This study is motivated by National Weather Service (NWS) forecaster reviews of the algorithm output, which hypothesized that more intense cloud-top cooling corresponds to more vigorous short-term (0–60 min) convective development. An objective validation of UW-CTC rates using a satellite-based object-tracking methodology is presented, along with a prognostic evaluation of such cloud-top cooling rates for use in forecasting the growth and development of deep convection. In general, both a cloud object’s instantaneous and maximum cooling rate(s) are shown to be useful prognostic tools in predicting future radar intensification. UW-CTC rates are shown to be most skillful in detecting convective clouds that achieved intense radar signatures. The UW-CTC rate lead time ahead of the various radar fields is also shown, along with an illustration of the benefit of UW-CTC rates in operational forecasting. The results of this study suggest that convective clouds with the strongest UW-CTC rates are more likely to achieve significant near-term (0–60 min) radar signatures in such fields as composite reflectivity, vertically integrated liquid (VIL), and maximum estimated size of hail (MESH) compared to clouds that exhibit only weak UW-CTC rates.

Corresponding author address: Daniel Hartung, 1225 W. Dayton St., Madison, WI 53706. E-mail: daniel.hartung@ssec.wisc.edu

Abstract

The University of Wisconsin Convective Initiation (UWCI) algorithm utilizes geostationary IR satellite data to compute cloud-top cooling (UW-CTC) rates and assign CI nowcasts to vertically growing clouds. This study is motivated by National Weather Service (NWS) forecaster reviews of the algorithm output, which hypothesized that more intense cloud-top cooling corresponds to more vigorous short-term (0–60 min) convective development. An objective validation of UW-CTC rates using a satellite-based object-tracking methodology is presented, along with a prognostic evaluation of such cloud-top cooling rates for use in forecasting the growth and development of deep convection. In general, both a cloud object’s instantaneous and maximum cooling rate(s) are shown to be useful prognostic tools in predicting future radar intensification. UW-CTC rates are shown to be most skillful in detecting convective clouds that achieved intense radar signatures. The UW-CTC rate lead time ahead of the various radar fields is also shown, along with an illustration of the benefit of UW-CTC rates in operational forecasting. The results of this study suggest that convective clouds with the strongest UW-CTC rates are more likely to achieve significant near-term (0–60 min) radar signatures in such fields as composite reflectivity, vertically integrated liquid (VIL), and maximum estimated size of hail (MESH) compared to clouds that exhibit only weak UW-CTC rates.

Corresponding author address: Daniel Hartung, 1225 W. Dayton St., Madison, WI 53706. E-mail: daniel.hartung@ssec.wisc.edu
Save