• Atkins, N. T., and Laurent M. S. , 2009: Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Wea. Rev., 137, 14971513.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., Arnott J. M. , Przybylinski R. W. , Wolf R. A. , and Ketcham B. D. , 2004: Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho. Mon. Wea. Rev., 132, 22242242.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., Bouchard C. S. , Przybylinski R. W. , Trapp R. J. , and Schmocker G. , 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 22752296.

    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., and Maddox R. A. , 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and Mote T. L. , 1998: A climatology of derecho-producing mesoscale convective systems in the central and eastern United States, 1986-95. Part I: Temporal and spatial distribution. Bull. Amer. Meteor. Soc., 79, 25272540.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and Sanders F. , 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642.

  • Bosart, L. F., Bracken W. E. , Seimon A. , Cannon J. W. , Lapenta K. D. , and Quinlan J. S. , 1998: Large-scale conditions associated with the northwesterly flow intense derecho events of 14–15 July 1995 in the northeastern United States. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 503–506.

  • Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109127.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Kneivel J. C. , and Parker M. D. , 2006: A multimodel assessment of RKW theory's relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792.

    • Search Google Scholar
    • Export Citation
  • Cannon, J. W., Lapenta K. D. , Quinlan J. S. , Bosart L. F. , Bracken W. E. , and Seimon A. , 1998: Radar characteristics of the 15 July 1995 northeastern U.S. derecho. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 440–443.

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Program. Bull. Amer. Meteor. Soc., 93, 5574.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and Stensrud D. J. , 2001: Simulation of a progressive derecho using composite initial conditions. Mon. Wea. Rev., 129, 15931616.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and Stensrud D. J. , 2004: Interpreting the climatology of derechoes. Wea. Forecasting, 19, 595605.

  • Coniglio, M. C., Elmore K. L. , Kain J. S. , Weiss S. J. , Xue M. , and Weisman M. L. , 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25, 408427.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Corfidi S. F. , and Kain J. S. , 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 10831102.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Corfidi S. F. , and Kain J. S. , 2012: Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 140, 10231043.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., Montgomery M. T. , and Hertenstein R. F. A. , 2002: Early evolution of vertical vorticity in a numerically simulated idealized convective line. J. Atmos. Sci., 59, 21132127.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006.

  • Davis, C. A., and Weisman M. L. , 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 20052030.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Trier S. B. , 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130, 28392858.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Trier S. B. , 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 20292049.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Galarneau T. J. , 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704.

  • Done, J., Davis C. A. , and Weisman M. L. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Moller A. R. , and Przybylinski R. , 1990: A unified set of conceptual models for variations on the supercell theme. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 40–45.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., Stensrud D. J. , and Coniglio M. C. , 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., 1998: An examination of observed shear profiles associated with long-lived bow echoes. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 30–33.

  • Evans, J. S., and Doswell C. A. III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Murphy J. D. , and Kain J. S. , 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807.

  • Fujita, T. T., 1978: Manual of downburst identification for Project Nimrod. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp.

  • Funk, T. W., Darmofal K. E. , Kirkpatrick J. D. , Dewald V. L. , Przybylinski R. W. , Schmocker G. K. , and Lin Y.-J. , 1999: Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and southern Indiana. Wea. Forecasting, 14, 976993.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., Montgomery M. T. , and Davis C. A. , 2004: The role of vortical hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hong, S., and Lim J. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., Rutledge S. A. , Biggerstaff M. I. , and Smull B. F. , 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NOAA/NWS/NCEP Office Note 437, 61 pp.

  • Johns, R. H., and Hirt W. D. , 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249.

  • Johnson, R. H., and Hamilton P. J. , 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 14441473.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Baldwin M. E. , Carbin G. W. , Bright D. A. , Levit J. J. , and Hart J. A. , 2005: Evaluating high-resolution configurations of the WRF model that are used to forecast severe convective weather: The 2005 SPC/NSSL Spring Program. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 2A.5. [Available online at https://ams.confex.com/ams/pdfpapers/94843.pdf.]

  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convective allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP Wea. Forecasting, 23, 931952.

    • Search Google Scholar
    • Export Citation
  • Loehrer, S. M., and Johnson R. H. , 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600621.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387.

  • Menard, R. D., and Fritsch J. M. , 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117, 12371260.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., Doswell C. A. , and Przybylinski R. , 1990: High-precipitation supercells: A conceptual model and documentation. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 52–57.

  • Montgomery, M. T., and Farrell B. F. , 1993: Tropical cyclone formation. J. Atmos. Sci., 50, 285310.

  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341.

  • Pfost, R. L., and Gerard A. E. , 1997: “Bookend vortex” induced tornadoes along the Natchez Trace. Wea. Forecasting, 12, 572580.

  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218.

    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., and Schmocker G. K. , 1993: The evolution of a widespread convective wind storm event over central and eastern Missouri. Preprints, 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 461–465.

  • Raymond, D. J., and Jiang H. , 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077.

  • Rodgers, R. F., and Fritsch J. M. , 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129, 605637.

    • Search Google Scholar
    • Export Citation
  • Roth, D., cited 2003: MCS with eye July 21, 2003. NOAA/NCEP/NPC. [Available online at http://www.hpc.ncep.noaa.gov/research/roth/landcane.html.]

  • Rotunno, R., Klemp J. B. , and Weisman M. L. , 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Schultz, D. M., and Vaughan G. , 2011: Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull. Amer. Meteor. Soc., 92, 443466.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and Keyser D. , 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones: The Erik Palmen Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Sieveking, J. E., and Przybylinski R. W. , 2004: The interaction of a HP supercell thunderstorm and bow echo to produce a prolonged severe wind event in east central Missouri. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 7A.5. [Available online at https://ams.confex.com/ams/pdfpapers/81818.pdf.]

  • Skamarock, W. C., and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Weisman M. L. , 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Weisman M. L. , and Klemp J. B. , 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Thompson, G., Field P. R. , Hall W. D. , and Rasmussen R. M. , 2006: A new bulk microphysical parameterization for WRF. Seventh WRF Users' Workshop, Boulder, Colorado, NCAR, 5.3. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/WorkshopPapers.htm.]

  • Trapp, R. T., and Weisman M. L. , 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and Davis C. A. , 2007: Mesoscale convective vortices observed during BAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135, 20512075.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , Ahijevych D. A. , Weisman M. L. , and Bryan G. H. , 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Murphy H. V. , Nester A. , Jorgensen D. P. , and Atkins N. T. , 2006a: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 27932812.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Murphy H. V. , Davis C. A. , and Atkins N. T. , 2006b: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670.

  • Weisman, M. L., and Klemp J. B. , 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Davis C. A. , 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 26032622.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Rotunno R. , 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Trapp R. T. , 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and environmental shear sensitivities. Mon. Wea. Rev., 131, 27792803.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Rotunno R. , 2004: A theory for strong long-lived squall lines revisited. J. Atmos. Sci., 61, 361382.

  • Weisman, M. L., Klemp J. B. , and Rotunno R. , 1988: The structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. A. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., Kain J. S. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2004: Examination of several different versions of the Weather Research and Forecasting (WRF) model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.1. [Available online at https://ams.confex.com/ams/pdfpapers/82052.pdf.]

  • Wheatley, D. M., and Trapp R. J. , 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., Trapp R. J. , and Atkins N. T. , 2006: Radar and damage analysis of severe bow echoes observed during BAMEX. Mon. Wea. Rev., 134, 791806.

    • Search Google Scholar
    • Export Citation
  • Wolf, P. L., 1998: WSR-88D radar depiction of supercell–bow-echo interaction: Unexpected evolution of a large, tornadic, comma-shaped supercell over eastern Oklahoma. Wea. Forecasting, 13, 492504.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 126 25
PDF Downloads 111 98 6

The 8 May 2009 Superderecho: Analysis of a Real-Time Explicit Convective Forecast

View More View Less
  • 1 National Center for Atmospheric Research,+ Boulder, Colorado
  • | 2 University at Albany, State University of New York, Albany, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Herein, an analysis of a 3-km explicit convective simulation of an unusually intense bow echo and associated mesoscale vortex that were responsible for producing an extensive swath of high winds across Kansas, southern Missouri, and southern Illinois on 8 May 2009 is presented. The simulation was able to reproduce many of the key attributes of the observed system, including an intense [~100 kt (51.4 m s−1) at 850 hPa], 10-km-deep, 100-km-wide warm-core mesovortex and associated surface mesolow associated with a tropical storm–like reflectivity eye. A detailed analysis suggests that the simulated convection develops north of a weak east–west lower-tropospheric baroclinic zone, at the nose of an intensifying low-level jet. The system organizes into a north–south-oriented bow echo as it moves eastward along the preexisting baroclinic zone in an environment of large convective available potential energy (CAPE) and strong tropospheric vertical wind shear. Once the system moves east of the low-level jet and into an environment of weaker CAPE and weaker vertical wind shear, it begins an occlusion-like phase, producing a pronounced comma-shaped reflectivity echo with an intense warm-core mesovortex at the head of the comma. During this phase, a deep strip of cyclonic vertical vorticity located on the backside of the bow echo consolidates into a single vortex core. A notable weakening of the low-level convectively generated cold pool also occurs during this phase, perhaps drawing parallels to theories of tropical cyclogenesis wherein cold convective downdrafts must be substantially mitigated for subsequent system intensification.

Current affiliation: Atmospheric Science Group, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Morris L. Weisman, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: weisman@ucar.edu

Abstract

Herein, an analysis of a 3-km explicit convective simulation of an unusually intense bow echo and associated mesoscale vortex that were responsible for producing an extensive swath of high winds across Kansas, southern Missouri, and southern Illinois on 8 May 2009 is presented. The simulation was able to reproduce many of the key attributes of the observed system, including an intense [~100 kt (51.4 m s−1) at 850 hPa], 10-km-deep, 100-km-wide warm-core mesovortex and associated surface mesolow associated with a tropical storm–like reflectivity eye. A detailed analysis suggests that the simulated convection develops north of a weak east–west lower-tropospheric baroclinic zone, at the nose of an intensifying low-level jet. The system organizes into a north–south-oriented bow echo as it moves eastward along the preexisting baroclinic zone in an environment of large convective available potential energy (CAPE) and strong tropospheric vertical wind shear. Once the system moves east of the low-level jet and into an environment of weaker CAPE and weaker vertical wind shear, it begins an occlusion-like phase, producing a pronounced comma-shaped reflectivity echo with an intense warm-core mesovortex at the head of the comma. During this phase, a deep strip of cyclonic vertical vorticity located on the backside of the bow echo consolidates into a single vortex core. A notable weakening of the low-level convectively generated cold pool also occurs during this phase, perhaps drawing parallels to theories of tropical cyclogenesis wherein cold convective downdrafts must be substantially mitigated for subsequent system intensification.

Current affiliation: Atmospheric Science Group, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Morris L. Weisman, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: weisman@ucar.edu
Save