• Allan, J. C., and Komar P. D. , 2000: Are ocean wave heights increasing in the eastern North Pacific? Eos, Trans. Amer. Geophys. Union, 81, 561567.

    • Search Google Scholar
    • Export Citation
  • Allan, J. C., and Komar P. D. , 2002: Extreme storms on the Pacific Northwest coast during the 1997–98 El Niño and 1998–99 La Niña. J. Coastal Res., 18, 175193.

    • Search Google Scholar
    • Export Citation
  • Allan, J. C., and Komar P. D. , 2006: Climate controls on US West Coast erosion processes. J. Coastal Res., 223, 511529.

  • Alvarez-Ellacuria, A., Orfila A. , Olabarrieta M. , Medina R. , Vizoso G. , and Tintoré J. , 2010: A nearshore wave and current operational forecasting system. J. Coastal Res., 263, 503509.

    • Search Google Scholar
    • Export Citation
  • Amante, C., and Eakins B. W. , 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp.

  • Arinaga, R. A., and Cheung K. F. , 2012: Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renewable Energy, 39, 4964.

    • Search Google Scholar
    • Export Citation
  • Battjes, J. A., and Janssen J. P. F. M. , 1978: Energy loss and set-up due to breaking of random waves. Proc. 16th Int. Conf. on Coastal Engineering, Hamburg, Germany, ASCE, 569–587.

  • Booij, N., and Holthuijsen L. H. , 1987: Propagation of ocean waves in discrete spectral wave models. J. Comput. Phys., 68, 307326.

  • Booij, N., Ris R. C. , and Holthuijsen L. H. , 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104 (C4), 76497666.

    • Search Google Scholar
    • Export Citation
  • Carignan, K. S., Taylor L. A. , Eakins B. W. , and Warnken R. R. , 2009a: Digital elevation model of Astoria, Oregon: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-22, National Geophysical Data Center, Boulder, CO, 44 pp.

  • Carignan, K. S., Taylor L. A. , Eakins B. W. , Warnken R. R. , Lim E. , and Grothe P. , 2009b: Digital elevation model of central Oregon coast: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-25, National Geophysical Data Center, Boulder, CO, 46 pp.

  • Carignan, K. S., Taylor L. A. , Eakins B. W. , Warnken R. R. , Sazonova T. , and Schoolcraft D. C. , 2009c: Digital elevation model of Garibaldi, Oregon: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-16, National Geophysical Data Center, Boulder, CO, 26 pp.

  • Carignan, K. S., Taylor L. A. , Eakins B. W. , Warnken R. R. , Sazonova T. , and Schoolcraft D. C. , 2009d: Digital elevation model of Port Orford, Oregon: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-21, National Geophysical Data Center, Boulder, CO, 34 pp.

  • Christensen, A., Rowe S. , and Needham M. D. , 2007: Value orientations, awareness of consequences, and participation in a whale watching education program in Oregon. Hum. Dimens. Wildl., 12, 289293.

    • Search Google Scholar
    • Export Citation
  • Cornett, A. M., 2009: A global wave energy resource assessment. Sea Technol., 50, 5964.

  • Dean, R. G., and Dalrymple R. A. , 1991: Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering, Vol. 2, World Scientific, 353 pp.

  • Encyclopaedia Britannica, cited 2012: Astoria Canyon. [Available online at http://www.britannica.com/EBchecked/topic/39897/Astoria-Canyon.]

  • Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Office Note 442, 14 pp.

  • Falcão, A. F. O., 2010: Wave energy utilization: A review of the technologies. Renewable Sustainable Energy Rev., 14, 899918.

  • Folley, M., and Whittaker T. , 2009: Analysis of the nearshore wave energy resource. Renewable Energy, 34, 17091715.

  • Gelfenbaum, G., Sherwood C. R. , Kerr L. A. , and Kurrus K. , 2000: Grays Harbor wave refraction experiment 1999: Data report. USGS Open-File Rep. 00–404, 132 pp. [Available online http://pubs.usgs.gov/of/2000/of00-404/.]

  • Gemmrich, J., Thomas B. , and Bouchard R. , 2011: Observational changes and trends in northeast Pacific wave records. Geophys. Res. Lett., 38, L22601, doi:10.1029/2011GL049518.

    • Search Google Scholar
    • Export Citation
  • Gorrell, L., Raubenheimer B. , Elgar S. , and Guza R. , 2011: SWAN predictions of waves observed in shallow water onshore of complex bathymetry. Coastal Eng., 58, 510516.

    • Search Google Scholar
    • Export Citation
  • Grothe, P., Taylor L. A. , Eakins B. W. , Carignan K. S. , Warnken R. R. , Lim E. , and Caldwell R. J. , 2010: Digital elevation model of Taholah, Washington: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-34, National Geophysical Data Center, Boulder, CO, 28 pp.

  • Grothe, P., Taylor L. A. , Eakins B. W. , Carignan K. S. , Caldwell R. J. , Lim E. , and Friday D. Z. , 2011: Digital elevation model of Crescent City, California: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-51, National Geophysical Data Center, Boulder, CO, 31 pp.

  • Hanson, J. L., Tracy B. A. , Tolman H. L. , and Scott R. D. , 2009: Pacific hindcast performance of three numerical wave models. J. Atmos. Oceanic Technol., 26, 16141633.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut Rep. A(8) (No. 12), 95 pp.

  • Hasselmann, S., Hasselmann K. , Allender J. H. , and Barnett T. P. , 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391.

    • Search Google Scholar
    • Export Citation
  • Iversen, H. W., 1952: Waves and breakers in shoaling water. Proc. Third Conf. on Coastal Engineering, Cambridge, MA, Council on Wave Research, 1–12.

  • Kirincich, A. R., Lentz S. J. , and Barth J. A. , 2009: Wave-driven inner-shelf motions on the Oregon coast. J. Phys. Oceanogr., 39, 29422956.

    • Search Google Scholar
    • Export Citation
  • Komar, P. D., Allan J. C. , and Ruggiero P. , 2009: Ocean wave climates: Trends and variations due to Earth's changing climate. Handbook of Coastal and Ocean Engineering, Y. C. Kim, Ed., World Scientific Publishing, 971–975.

  • Kuik, A. J., van Vledder G. P. , and Holthuijsen L. H. , 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034.

    • Search Google Scholar
    • Export Citation
  • Long, J. W., and Özkan-Haller H. T. , 2005: Offshore controls on nearshore rip currents. J. Geophys. Res., 110, C12007, doi:10.1029/2005JC003018.

    • Search Google Scholar
    • Export Citation
  • Magne, R., Belibassakis K. A. , Herbers T. H. C. , Ardhuin F. , O'Reilly W. C. , and Rey V. , 2007: Evolution of surface gravity waves over a submarine canyon. J. Geophys. Res., 112, C01002, doi:10.1029/2005JC003035.

    • Search Google Scholar
    • Export Citation
  • Menéndez, M., Méndez F. J. , Losada I. J. , and Graham N. E. , 2008: Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys. Res. Lett., 35, L22607, doi:10.1029/2008GL035394.

    • Search Google Scholar
    • Export Citation
  • NDBC, 2009: Handbook of automated data quality control checks and procedures. NDBC Tech. Doc. 09-02, NOAA/National Data Buoy Center, 78 pp.

  • Rao, S., and Mandal S. , 2005: Hindcasting of storm waves using neural networks. Ocean Eng., 32, 667684.

  • Ris, R. C., Holthuijsen L. H. , and Booij N. , 1999: A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res., 104 (C4), 76677681.

    • Search Google Scholar
    • Export Citation
  • Risien, C., and Coauthors, 2009: The NANOOS visualization system: Aggregating, displaying and serving data. OCEANS 2009—Marine Technology for Our Future: Global and Local Challenges, Biloxi, MS, MTS/IEEE, 1–9.

  • Rogers, W. E., Kaihatu J. , Petit H. , Booij N. , and Holthuijsen L. , 2002: Diffusion reduction in an arbitrary scale third generation wind wave model. Ocean Eng., 29, 13571390.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., Kaihatu J. , Hsu L. , Jensen R. E. , Dykes J. D. , and Holland K. T. , 2007: Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Eng., 54 (1), 115.

    • Search Google Scholar
    • Export Citation
  • Romeiser, R., 1993: Global validation of the wave model WAM over a one-year period using Geosat wave height data. J. Geophys. Res., 98 (C3), 47134726.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, P., Komar P. D. , and Allan J. C. , 2010: Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coastal Eng., 57, 539552.

    • Search Google Scholar
    • Export Citation
  • Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 12791292.

  • Seymour, R. J., 2011: Evidence for changes to the northeast Pacific wave climate. J. Coastal Res., 27, 194201.

  • Stockdon, H. F., Holman R. A. , Howd P. A. , and Sallenger A. H. Jr., 2006: Empirical parameterization of setup, swash, and runup. Coastal Eng., 53, 573588.

    • Search Google Scholar
    • Export Citation
  • SWAN Team, 2010: SWAN user manual: SWAN cycle III version 40.91A. Delft University of Technology, 121 pp. [Available online at http://swanmodel.sourceforge.net/.]

  • Tolman, H. L., 2002a: Alleviating the garden sprinkler effect in wind wave models. Ocean Modell., 4, 269289.

  • Tolman, H. L., 2002b: Validation of WAVEWATCH III version 1.15 for a global domain. NOAA/NWS/NCEP/OMB Rep. 213, 33 pp.

  • Tolman, H. L., 2006: Development of a multi-grid version of WAVEWATCH III. NOAA/NWS/NCEP/MMAB Tech. Rep. 256, 88 pp.

  • Tolman, H. L., 2008: A mosaic approach to wind wave modeling. Ocean Modell., 25, 3547.

  • Tolman, H. L., and Chalikov D. , 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518.

  • Young, I. R., Zieger S. , and Babanin A. V. , 2011: Global trends in wind speed and wave height. Science, 332, 451455.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 93 8
PDF Downloads 91 64 1

An Inner-Shelf Wave Forecasting System for the U.S. Pacific Northwest

View More View Less
  • 1 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
  • | 2 College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 3 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An operational inner-shelf wave forecasting system was implemented for the Oregon and southwest Washington coast in the U.S. Pacific Northwest (PNW). High-resolution wave forecasts are useful for navigational planning, identifying wave energy resources, providing information for site-specific coastal flood models, and having an informed recreational beach user group, among other things. This forecasting model is run once a day at 1200 UTC producing 84-h forecasts. A series of nested grids with increasing resolution shoreward are implemented to achieve a 30-arc-second resolution at the shelf level. This resolution is significantly higher than what the current operational models produce, thus improving the ability to quantify the alongshore variations of wave conditions on the PNW coast. Normalized root-mean-squared errors in significant wave height and mean wave period range from 0.13 to 0.24 and from 0.13 to 0.26, respectively. Visualization of the forecasts is made available online and is presently being used by recreational beach users and the scientific community. A series of simulations, taking advantage of having a validated shelf-scale numerical wave model, suggests that neither dissipation due to bottom friction nor wind generation is important in the region at this scale for wave forecasting and hindcasting when considering bulk parameters as opposed to the processes of refraction and shoaling. The Astoria and McArthur Canyons; the Stonewall, Perpetua, and Heceta Banks; and Cape Blanco are significant bathymetric features that are shown to be capable of producing alongshore variability of wave heights on the shelf.

Corresponding author address: Gabriel García-Medina, 104 CEOAS Administration Bldg., Corvallis, OR 97331. E-mail: ggarcia@coas.oregonstate.edu

Abstract

An operational inner-shelf wave forecasting system was implemented for the Oregon and southwest Washington coast in the U.S. Pacific Northwest (PNW). High-resolution wave forecasts are useful for navigational planning, identifying wave energy resources, providing information for site-specific coastal flood models, and having an informed recreational beach user group, among other things. This forecasting model is run once a day at 1200 UTC producing 84-h forecasts. A series of nested grids with increasing resolution shoreward are implemented to achieve a 30-arc-second resolution at the shelf level. This resolution is significantly higher than what the current operational models produce, thus improving the ability to quantify the alongshore variations of wave conditions on the PNW coast. Normalized root-mean-squared errors in significant wave height and mean wave period range from 0.13 to 0.24 and from 0.13 to 0.26, respectively. Visualization of the forecasts is made available online and is presently being used by recreational beach users and the scientific community. A series of simulations, taking advantage of having a validated shelf-scale numerical wave model, suggests that neither dissipation due to bottom friction nor wind generation is important in the region at this scale for wave forecasting and hindcasting when considering bulk parameters as opposed to the processes of refraction and shoaling. The Astoria and McArthur Canyons; the Stonewall, Perpetua, and Heceta Banks; and Cape Blanco are significant bathymetric features that are shown to be capable of producing alongshore variability of wave heights on the shelf.

Corresponding author address: Gabriel García-Medina, 104 CEOAS Administration Bldg., Corvallis, OR 97331. E-mail: ggarcia@coas.oregonstate.edu
Save