• Bargen, D. W., and Brown R. C. , 1980: Interactive radar velocity unfolding. Preprints, 19th Conf. on Radar Meteorology, Miami, FL, Amer. Meteor. Soc., 278–283.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Bergen, W. R., and Albers S. C. , 1988: Two- and three-dimensional dealiasing of Doppler radar velocities. J. Atmos. Oceanic Technol., 5, 305319.

    • Search Google Scholar
    • Export Citation
  • Boren, T. A., Cruz J. R. , and Zrnić D. S. , 1986: An artificial intelligence approach to Doppler weather radar velocity dealiasing. Proc. 23rd Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 107–110.

  • Brown, R. A., Lemon L. R. , and Burgess D. W. , 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938.

  • Brown, R. A., Wood V. T. , and Sirmans D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J., Smith T. , Lakshmanan V. , and Ansari S. , 2011: An automated system for processing the Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS). Preprints, 27th Conf. on Interactive Information Processing Systems (IIPS), Seattle, WA, Amer. Meteor. Soc., J9.3. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper182332.html.]

  • Cintineo, J., Smith T. , Lakshmanan V. , Brooks H. E. , and Ortega K. L. , 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Kain J. S. , Marsh P. T. , Correia J. Jr., Xue M. , and Kong F. , 2012: Forecasting tornado pathlengths using a three-dimensional object algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gao J. , Marsh P. , Smith T. , Kain J. , Correia J. , Xue M. , and Kong F. , 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407.

    • Search Google Scholar
    • Export Citation
  • Cox, I., and Hingorani S. L. , 1996: An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern Anal. Mach. Intell., 18, 138150.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and Alberty R. K. , 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687.

    • Search Google Scholar
    • Export Citation
  • Eilts, M. D., and Smith S. D. , 1990: Efficient dealiasing of Doppler velocities using local environment constraints. J. Atmos. Oceanic Technol., 7, 118128.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. M., Albo E. D. , Goodrich R. K. , and Peters D. J. , 1994: NASA/NCAR airborne and ground-based wind shear studies. Final Rep., Contract NCC1-155, 343 pp.

  • Forbes, G. S., 1981: On the reliability of hook echoes as tornado indicators. Mon. Wea. Rev., 109, 14571466.

  • Fulton, R., Breidenback D. , Miller D. , and O'Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395.

  • Jain, A., 1989: Fundamentals of Digital Image Processing. Prentice Hall, 569 pp.

  • Jing, Z., and Wiener G. , 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol., 10, 798808.

  • Kain, J. S., Dembek S. R. , Weiss S. J. , Case J. L. , Levit J. J. , and Sobash R. A. , 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542.

    • Search Google Scholar
    • Export Citation
  • Kessinger, C., Ellis S. , and Van Andel J. , 2003: The radar echo classifier: A fuzzy logic algorithm for the WSR-88D. Preprints, Third Conf. on Artificial Applications to the Environmental Sciences, Long Beach, CA, Amer. Meteor. Soc., P1.6. [Available online at https://ams.confex.com/ams/pdfpapers/54946.pdf.]

  • Lakshmanan, V., 2012: Neighborhood and window operations. Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human and Environmental Applications, V. Lakshmanan, Ed., Springer, 129–171.

  • Lakshmanan, V., Rabin R. , and DeBrunner V. , 2003: Multiscale storm identification and forecast. Atmos. Res., 67–68, 367380, doi:10.1016/S0169-8095(03)00068-1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Hondl K. , Stumpf G. J. , and Witt A. , 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Fritz A. , Smith T. , Hondl K. , and Stumpf G. J. , 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Stumpf G. J. , and Hondl K. , 2007b: The Warning Decision Support System—Integrated Information. Wea. Forecasting, 22, 596612.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Zhang J. , and Howard K. , 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453462.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Miller M. , and Smith T. , 2013: Quality control of accumulated fields by applying spatial and temporal constraints. J. Atmos. Oceanic Technol., 30, 745758.

    • Search Google Scholar
    • Export Citation
  • Liu, S., Xue M. , and Xu Q. , 2007: Using wavelet analysis to detect tornadoes from Doppler radar radial-velocity observations. J. Atmos. Oceanic Technol., 24, 344359.

    • Search Google Scholar
    • Export Citation
  • Merritt, M. W., 1984: Automatic velocity dealiasing for real-time applications. Proc. 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 528–533.

  • Mitchell, E. D., and Elmore K. L. , 1998: A technique for identifying regions of high shear associated with mesocyclones and tornadic vortex signatures. Preprints, 14th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 312–315.

  • Mitchell, E. D., Vasiloff S. V. , Stumpf G. J. , Witt A. , Eilts M. D. , Johnson J. T. , and Thomas K. W. , 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366.

    • Search Google Scholar
    • Export Citation
  • Murty, K. G., 1968: An algorithm for ranking all the assignments in order of increasing cost. Oper. Res., 16, 682687.

  • Newman, J. F., Lakshmanan V. , Heinselman P. L. , Richman M. B. , and Smith T. M. , 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194211.

    • Search Google Scholar
    • Export Citation
  • NOAA/NSSL, cited 2011: NOAA technology helps American Red Cross respond faster. [Available online at https://secure.nssl.noaa.gov/briefings/2011/06/noaa-technology-helps-american-red-cross-respond-faster/.]

  • Ray, P. S., and Ziegler C. , 1977: De-aliasing first-moment Doppler estimates. J. Appl. Meteor., 16, 563564.

  • Root, B., Yeary M. , and Yu T.-Y. , 2011: Novel storm cell tracking with multiple hypothesis tracking. Preprints, 27th Conf. on Interactive Information Processing Systems (IIPS), Seattle, WA, Amer. Meteor. Soc., 8B.3. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper184250.html.]

  • Smith, T. M., and Elmore K. L. , 2004: The use of radial velocity derivatives to diagnose rotation and divergence. Preprints, 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6. [Available online at https://ams.confex.com/ams/pdfpapers/81827.pdf.]

  • Steiner, M., and Smith J. A. , 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673686.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and Brown R. A. , 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 160 16
PDF Downloads 183 144 14

An Automated Method for Depicting Mesocyclone Paths and Intensities

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The location and intensity of mesocyclone circulations can be tracked in real time by accumulating azimuthal shear values over time at every location of a uniform spatial grid. Azimuthal shear at low (0–3 km AGL) and midlevels (3–6 km AGL) of the atmosphere is computed in a noise-tolerant manner by fitting the Doppler velocity observations in the neighborhood of a pulse volume to a plane and finding the slope of that plane. Rotation tracks created in this manner are contaminated by nonmeteorological signatures caused by poor velocity dealiasing, ground clutter, radar test patterns, and spurious shear values. To improve the quality of these fields for real-time use and for an accumulated multiyear climatology, new dealiasing strategies, data thresholding, and multiple hypothesis tracking (MHT) techniques have been implemented. These techniques remove nearly all nonmeteorological contaminants, resulting in much clearer rotation tracks that appear to match mesocyclone paths and intensities closely.

Corresponding author address: Madison L. Miller, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: madison.burnett@noaa.gov

Abstract

The location and intensity of mesocyclone circulations can be tracked in real time by accumulating azimuthal shear values over time at every location of a uniform spatial grid. Azimuthal shear at low (0–3 km AGL) and midlevels (3–6 km AGL) of the atmosphere is computed in a noise-tolerant manner by fitting the Doppler velocity observations in the neighborhood of a pulse volume to a plane and finding the slope of that plane. Rotation tracks created in this manner are contaminated by nonmeteorological signatures caused by poor velocity dealiasing, ground clutter, radar test patterns, and spurious shear values. To improve the quality of these fields for real-time use and for an accumulated multiyear climatology, new dealiasing strategies, data thresholding, and multiple hypothesis tracking (MHT) techniques have been implemented. These techniques remove nearly all nonmeteorological contaminants, resulting in much clearer rotation tracks that appear to match mesocyclone paths and intensities closely.

Corresponding author address: Madison L. Miller, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: madison.burnett@noaa.gov
Save