• Abawi, Y., Dutta S. , Zhang X. , and McClymont D. , 2005a: ENSO based streamflow forecasting and its application to water allocation and cropping decisions—An Australian experience. Regional Hydrological Impacts of Climatic Change-Impact Assessments and Decision Making, T. Wagener, S. Franks, and H. Gupta, Eds., IAHS Publ. 295, 346–354.

  • Abawi, Y., Lianso P. , Harrison M. , and Mason S. J. , 2005b: Water, health and early warnings. Seasonal Climate: Forecasting and Managing Risk, A. Troccoli et al., Eds., Springer, 351–395.

  • Ashok, K., Behera S. K. , Rao S. A. , Weng H. , and Yamagata T. , 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Ropelewski C. F. , 1992: Prediction of ENSO episodes using canonical correlation analysis. J. Climate, 5, 13161345.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and Chorley R. J. , 2003: Atmosphere, Weather and Climate. 8th ed. Routledge, 421 pp.

  • Colman, R., and Coauthors, 2005: BMRC Atmospheric model (BAM) version 3.0: Comparison with mean climatology. BMRC Research Rep. 108, 23 pp.

  • He, Y., and Barnston A. G. , 1996: Long-lead forecasts of seasonal precipitation in the tropical Pacific islands using CCA. J. Climate, 8, 20202035.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., Lim E. , Wang G. , Alves O. , and Hudson D. , 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713, doi:10.1029/2009GL040100.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., Alves O. , Hendon H. H. , and Wang G. , 2010: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171, doi:10.1007/s00382-00010-00763-00389.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., and Bowler N. , 2009: On the reliability and calibration of ensemble forecasts. Mon. Wea. Rev., 137, 17171720.

  • Kao, H. Y., and Yu J. Y. , 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615632.

  • Katzfey, J., Chattopadhyay M. , McGregor J. L. , Nguyen K. , and Thatcher M. , 2011: The added value of dynamical downscaling. 19th Int. Congress on Modelling and Simulation, Perth, WA, Australia, Modelling and Simulation Society of Australia and New Zealand, 2747–2753.

  • Kug, J., Jin F.-F. , and An S. , 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and Hansen J. E. , 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31, 118133.

    • Search Google Scholar
    • Export Citation
  • Lal, M., McGregor J. L. , and Nguyen K. C. , 2007: Very high-resolution climate simulation over Fiji using a global variable-resolution model. Climate Dyn., 30, 293305.

    • Search Google Scholar
    • Export Citation
  • Langford, S., and Hendon H. H. , 2011: Assessment of international seasonal rainfall forecasts for Australia and the benefit of multi-model ensembles for improving reliability. CAWCR Tech. Rep. 39, 32 pp.

  • Langford, S., and Hendon H. H. , 2013: Improving reliability of coupled model forecasts of Australian seasonal rainfall. Mon. Wea. Rev., 141, 728741.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., Hendon H. H. , Hudson D. , Wang G. , and Alves O. , 2009: Dynamical forecast of inter–El Niño variations of tropical SST and Australian spring rainfall. Mon. Wea. Rev., 137, 37963810.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., Hendon H. H. , Alves O. , Yin Y. , Wang G. , Hudson D. , Zhao M. , and Shi L. , 2010: Dynamical seasonal prediction of tropical Indo-Pacific SST and Australian rainfall with improved ocean initial conditions. CAWCR Tech. Rep. 032, 26 pp.

  • Louis, F.-J., 1983: Parameterization of sub-grid scale processes. Proc. Seminar on Interpretation of Numerical Weather Prediction Products, Reading, United Kingdom, ECMWF, 83–97.

  • Manabe, S., and Holloway J. L. , 1975: The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere. J. Geophys. Res., 80, 16171649.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., Nguyen K. C. , and Katzfey J. J. , 2008: A variety of tropical climate simulations using CCAM. High Resolution Modelling—The Second CAWCR Modelling Workshop, Melbourne, VIC, Australia, CAWCR, 29–32.

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 2750.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., Schiller A. , Griffin D. A. , and Brassington G. B. , 2005: Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Quart. J. Roy. Meteor. Soc., 131, 33013311.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM2 documentation, user's guide and reference manual, version 1.0. GFDL, 232 pp.

  • Palmer, T. N., Shutts G. J. , and Swinbank R. , 1986: Alleviation of a systematic bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., 1999: How well does a coarse-resolution circulation model simulate observed interannual variability in the upper Indian Ocean? Geophys. Res. Lett., 26, 14851488.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., and Godfrey J. S. , 2003: Indian Ocean intraseasonal variability in an ocean general circulation model. J. Climate, 16, 2139.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., Godfrey J. , McIntosh P. , Meyers G. , Smith N. , Alves O. , Wang O. , and Fiedler R. , 2002: A new version of the Australian Community Ocean Model for seasonal climate prediction. CSIRO Marine Research Rep. 240, 82 pp.

  • Schwarzkopf, M. D., and Fels S. B. , 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96 (D5), 90759096.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A., and England M. H. , 2009: El Niño Modoki impacts on Australian rainfall. J. Climate, 22, 31673174.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Valcke, S., Terray L. , and Piacentine A. , 2000: OASIS 2.4 ocean atmosphere sea ice soil user's guide, version 2.4. CERFACS TR CMGC.00-10, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 85 pp.

  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970.

  • Wang, G., Alves O. , and Smith N. , 2005: BAM3.0 tropical surface flux simulation and its impact on SST drift in a coupled model. BMRC Research Rep. 107, 30 pp.

  • Wang, G., Hudson D. , Yin Y. , Alves O. , Hendon H. , Langford S. , Liu G. , and Tseitkin F. , 2011: POAMA-2 SST skill assessment and beyond. CAWCR Research Letters, No. 6, 41–46.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Elsevier, 627 pp.

  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., Alves O. , and Oke P. R. , 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Dong M. , Gualdi S. , Hendon H. H. , Maloney E. D. , Marshall A. , Sperber K. R. , and Wang W. , 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled models. Climate Dyn., 27, 573592.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Hendon H. H. , 2009: Representation and prediction of the Indian Ocean dipole in POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc., 135, 337352.

    • Search Google Scholar
    • Export Citation
  • Zhong, A., Alves O. , Hendon H. , and Rikus L. , 2006: On aspects of the mean climatology and tropical interannual variability in the BMRC atmospheric model (BAM 3.0). BMRC Research Rep. 121, 34 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 176 7
PDF Downloads 124 102 0

Seasonal Forecasting in the Pacific Using the Coupled Model POAMA-2

View More View Less
  • 1 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 2 National Climate Centre, Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 3 DHM Software Pty Ltd., Toowoomba, Queensland, Australia
  • | 4 National Climate Centre, Bureau of Meteorology, Melbourne, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The development of a dynamical model seasonal prediction service for island nations in the tropical South Pacific is described. The forecast model is the Australian Bureau of Meteorology's Predictive Ocean–Atmosphere Model for Australia (POAMA), a dynamical seasonal forecast system. Using a hindcast set for the period 1982–2006, POAMA is shown to provide skillful forecasts of El Niño and La Niña many months in advance and, because the model faithfully simulates the spatial and temporal variability of rainfall associated with displacements of the southern Pacific convergence zone (SPCZ) and ITCZ during La Niña and El Niño, it also provides good predictions of rainfall throughout the tropical Pacific region. The availability of seasonal forecasts from POAMA should be beneficial to Pacific island countries for the production of regional climate outlooks across the region.

Corresponding author address: Andrew Cottrill, Australian Bureau of Meteorology, 700 Collins St., Docklands, Melbourne VIC 3181, Australia. E-mail: a.cottrill@bom.gov.au

Abstract

The development of a dynamical model seasonal prediction service for island nations in the tropical South Pacific is described. The forecast model is the Australian Bureau of Meteorology's Predictive Ocean–Atmosphere Model for Australia (POAMA), a dynamical seasonal forecast system. Using a hindcast set for the period 1982–2006, POAMA is shown to provide skillful forecasts of El Niño and La Niña many months in advance and, because the model faithfully simulates the spatial and temporal variability of rainfall associated with displacements of the southern Pacific convergence zone (SPCZ) and ITCZ during La Niña and El Niño, it also provides good predictions of rainfall throughout the tropical Pacific region. The availability of seasonal forecasts from POAMA should be beneficial to Pacific island countries for the production of regional climate outlooks across the region.

Corresponding author address: Andrew Cottrill, Australian Bureau of Meteorology, 700 Collins St., Docklands, Melbourne VIC 3181, Australia. E-mail: a.cottrill@bom.gov.au
Save