• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Anderson, J. L., and Collins N. , 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 8, 14521463.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., Hoar T. , Raeder K. , Liu H. , Collins N. , Torn R. , and Avellano A. , 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Benjamin, S. G., Moniger W. R. , Sahm S. R. , and Smith T. L. , 2007: Mesonet wind quality monitoring allowing assimilation in the RUC and other NCEP models. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., P1.33. [Available online at https://ams.confex.com/ams/pdfpapers/124829.pdf.]

  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709.

    • Search Google Scholar
    • Export Citation
  • Brown, J., and Coauthors, 2012: Rapid Refresh replaces the Rapid Update Cycle at NCEP. Preprints, 2012 Canadian Meteorological and Oceanographic Society Congress/21st Conf. on Numerical Weather Prediction/Conf. on 25th Weather and Forecasting, Montreal, QC, Canada, CMOS and Amer. Meteor. Soc., 3B1.2.

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Sun W.-Y. , 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Chou, M.-D., and Suarez M. J. , 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • De Pondeca, M. S. F. V., and Coauthors, 2011: The Real-Time Mesoscale Analysis at NOAA's National Centers for Environmental Prediction: Current status and development. Wea. Forecasting, 26, 593612.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 15541562.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., Stensrud D. J. , and Dowell D. C. , 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainty. Mon. Wea. Rev., 135, 18461868.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Snyder C. , 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225.

  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update. J. Atmos. Oceanic Technol., 24, 301321.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 36713682.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., Barth M. F. , and Benjamin L. A. , 2005: An update on MADIS observation ingest, integration, quality control and distribution capabilities. Preprints, 21st Int. Conf. on Interactive Information and Processing Systems, San Diego, CA, Amer. Meteor. Soc., J7.12. [Available online at https://ams.confex.com/ams/pdfpapers/86703.pdf.]

  • Miller, P. A., Barth M. F. , Benjamin L. A. , Artz R. S. , and Pendergrass W. R. , 2007: MADIS support for UrbaNet. Preprints, 14th Symp. on Meteorological Observation and Instrumentation/16th Conf. on Applied Climatology, San Antonio, TX, Amer. Meteor. Soc., JP2.5. [Available online at http://ams.confex.com/ams/pdfpapers/119116.pdf.]

  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 234 pp.

  • NWS, 1994: Technique specification package 88-21-R2 for AWIPS-90 RFP. Appendix G requirements numbers: Quality control incoming data, AWIPS Doc. TSP-03201992R2, NOAA/National Weather Service/Office of Systems Development, 39 pp.

  • Parrish, D. F., and Derber J. C. , 1992: The National Meteorological Center's Spectral Statistical–Interpolation Analysis System. Mon. Wea. Rev., 120, 17471763.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and non-local closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., Parrish D. F. , and Masutani M. , 2000: Meteorological observation data compression: An alternative to conventional “super-obbing.” NCEP Office Note 430, 12 pp.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stensrud, D. J., Bao J.-W. , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Yussouf N. , Dowell D. C. , and Coniglio M. C. , 2009: Assimilating surface data into a mesoscale model ensemble: Cold pool analyses from spring 2007. Atmos. Res., 93, 207220.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., Hakim G. J. , and Snyder C. , 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502.

    • Search Google Scholar
    • Export Citation
  • Tyndall, D., and Horel J. , 2013: Impacts of mesonet observations on meteorological surface analyses. Wea. Forecasting, 28, 254269.

  • Wheatley, D. M., and Stensrud D. J. , 2010: The impact of assimilating surface pressure observations on severe weather events in a WRF mesoscale ensemble system. Mon. Wea. Rev., 138, 16731694.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., Stensrud D. J. , Dowell D. , and Yussouf N. , 2012: Application of a WRF mesoscale data assimilation system to springtime severe weather events 2007–09. Mon. Wea. Rev., 140, 15391557.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and Hamill T. M. , 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Wu, W.-S., Purser R. J. , and Parrish D. F. , 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2011: Measuring information content from observations for data assimilation: Spectral formulations and their implications to observational data compression. Tellus, 63A, 793804.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., and Coauthors, 2000: A case study of sensitivity of the Eta Data Assimilation System. Wea. Forecasting, 15, 603621.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Meng Z. , and Aksoy A. , 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 55 8
PDF Downloads 34 30 2

Influence of Mesonet Observations on the Accuracy of Surface Analyses Generated by an Ensemble Kalman Filter

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The expansion of surface mesoscale networks (mesonets) across the United States provides a high-resolution observational dataset for meteorological analysis and prediction. To clarify the impact of mesonet data on the accuracy of surface analyses, 2-m temperature, 2-m dewpoint, and 10-m wind analyses for 2-week periods during the warm and cold seasons produced through an ensemble Kalman filter (EnKF) approach are compared to surface analyses created by the Real-Time Mesoscale Analysis (RTMA). Results show in general a similarity between the EnKF analyses and the RTMA, with the EnKF exhibiting a smoother appearance with less small-scale variability. Root-mean-square (RMS) innovations are generally lower for temperature and dewpoint from the RTMA, implying a closer fit to the observations. Kinetic energy spectra computed from the two analyses reveal that the EnKF analysis spectra match more closely to the spectra computed from observations and numerical models in earlier studies. Data-denial experiments using the EnKF completed for the first week of the warm and cold seasons, as well as for two periods characterized by high mesoscale variability within the experimental domain, show that mesonet data removal imparts only minimal degradation to the analyses. This is because of the localized background covariances computed for the four surface variables having spatial scales much larger than the average spacing of mesonet stations. Results show that removing 75% of the mesonet observations has only minimal influence on the analysis.

Corresponding author address: Kent Knopfmeier, National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: kent.knopfmeier@noaa.gov

Abstract

The expansion of surface mesoscale networks (mesonets) across the United States provides a high-resolution observational dataset for meteorological analysis and prediction. To clarify the impact of mesonet data on the accuracy of surface analyses, 2-m temperature, 2-m dewpoint, and 10-m wind analyses for 2-week periods during the warm and cold seasons produced through an ensemble Kalman filter (EnKF) approach are compared to surface analyses created by the Real-Time Mesoscale Analysis (RTMA). Results show in general a similarity between the EnKF analyses and the RTMA, with the EnKF exhibiting a smoother appearance with less small-scale variability. Root-mean-square (RMS) innovations are generally lower for temperature and dewpoint from the RTMA, implying a closer fit to the observations. Kinetic energy spectra computed from the two analyses reveal that the EnKF analysis spectra match more closely to the spectra computed from observations and numerical models in earlier studies. Data-denial experiments using the EnKF completed for the first week of the warm and cold seasons, as well as for two periods characterized by high mesoscale variability within the experimental domain, show that mesonet data removal imparts only minimal degradation to the analyses. This is because of the localized background covariances computed for the four surface variables having spatial scales much larger than the average spacing of mesonet stations. Results show that removing 75% of the mesonet observations has only minimal influence on the analysis.

Corresponding author address: Kent Knopfmeier, National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: kent.knopfmeier@noaa.gov
Save